Rongtan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167935/publications.pdf Version: 2024-02-01

RONCTANLL

#	Article	IF	CITATIONS
1	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
2	Overturning CO ₂ Hydrogenation Selectivity with High Activity via Reaction-Induced Strong Metal–Support Interactions. Journal of the American Chemical Society, 2022, 144, 4874-4882.	13.7	139
3	Modulating the Formation and Evolution of Surface Hydrogen Species on ZnO through Cr Addition. ACS Catalysis, 2022, 12, 6255-6264.	11.2	15
4	Hydrogenated Molybdenum Oxide Overlayers Formed on Mo Nitride Nanosheets in Ambient-Pressure CO ₂ /H ₂ Gases. ACS Applied Materials & Interfaces, 2022, 14, 26194-26203.	8.0	4
5	Low-temperature growth of ultrathin and epitaxial Mo ₂ C nanosheets <i>via</i> a vapor–liquid–solid process. Nanoscale, 2022, 14, 9142-9149.	5.6	2
6	In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nature Communications, 2021, 12, 1406.	12.8	42
7	Oxidative Strong Metal–Support Interactions between Metals and Inert Boron Nitride. Journal of Physical Chemistry Letters, 2021, 12, 4187-4194.	4.6	35
8	A vanadium-doped BSCF perovskite for CO2 electrolysis in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 19814-19821.	7.1	17
9	Vapor–Liquid–Solid Growth of Thin and Epitaxial Transition Metal Nitride Nanosheets for Catalysis and Energy Conversion. ACS Applied Nano Materials, 2021, 4, 10735-10742.	5.0	7
10	Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6â^îî´via repeated redox manipulations for CO2 electrolysis. Nature Communications, 2021, 12, 5665.	12.8	102
11	Visualizing Formation of Tungsten Carbide Model Catalyst and its Interaction with Oxygen. ChemCatChem, 2020, 12, 1036-1045.	3.7	4
12	Tunable deep ultraviolet laser based near ambient pressure photoemission electron microscope for surface imaging in the millibar regime. Review of Scientific Instruments, 2020, 91, 113704.	1.3	5
13	Wafer-scale single-crystal hexagonal boron nitride monolayers on CuÂ(111). Nature, 2020, 579, 219-223.	27.8	409
14	Interlayer Decoupling in 30º Twisted Bilayer Graphene Quasicrystal. ACS Nano, 2020, 14, 1656-1664.	14.6	64
15	Step-confined thin film growth via near-surface atom migration. Nano Research, 2020, 13, 1552-1557.	10.4	2
16	Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO ₂ nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 31862-31871.	2.8	96