Mathew J Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167893/publications.pdf Version: 2024-02-01

		76031	139680
191	5,862	42	61
papers	citations	h-index	g-index
211	211	211	3249
all docs	docs citations	times ranked	citing authors

MATHEW LOWENS

#	Article	IF	CITATIONS
1	Unifying the validation of ambient solar wind models. Advances in Space Research, 2023, 72, 5275-5286.	1.2	7
2	Quantifying the Uncertainty in CME Kinematics Derived From Geometric Modeling of Heliospheric Imager Data. Space Weather, 2022, 20, .	1.3	6
3	Evidence From Galactic Cosmic Rays That the Sun Has Likely Entered a Secular Minimum in Solar Activity. Space Weather, 2022, 20, .	1.3	1
4	Predictive Capabilities of Corotating Interaction Regions Using STEREO and <i>Wind</i> Inâ€6itu Observations. Space Weather, 2022, 20, .	1.3	4
5	Rate of Change of Large-Scale Solar-Wind Structure. Solar Physics, 2022, 297, .	1.0	4
6	Estimating the Open Solar Flux from In-Situ Measurements. Solar Physics, 2022, 297, .	1.0	6
7	In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo. Astronomy and Astrophysics, 2021, 656, A2.	2.1	40
8	Why are ELEvoHI CME Arrival Predictions Different if Based on STEREOâ€A or STEREOâ€B Heliospheric Imager Observations?. Space Weather, 2021, 19, e2020SW002674.	1.3	11
9	Extreme Space-Weather Events and the Solar Cycle. Solar Physics, 2021, 296, 1.	1.0	23
10	Using Gradient Boosting Regression to Improve Ambient Solar Wind Model Predictions. Space Weather, 2021, 19, e2020SW002673.	1.3	15
11	Constraining the Location of the Outer Boundary of Earth's Outer Radiation Belt. Earth and Space Science, 2021, 8, e2020EA001610.	1.1	2
12	Toward a Next Generation Particle Precipitation Model: Mesoscale Prediction Through Machine Learning (a Case Study and Framework for Progress). Space Weather, 2021, 19, e2020SW002684.	1.3	15
13	Constraining Suprathermal Electron Evolution in a Parker Spiral Field With Cassini Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028669.	0.8	Ο
14	Zooming through the MIST. Astronomy and Geophysics, 2021, 62, 3.24-3.27.	0.1	0
15	Forecasting Occurrence and Intensity of Geomagnetic Activity With Patternâ€Matching Approaches. Space Weather, 2021, 19, e2020SW002624.	1.3	7
16	Improving Solar Wind Forecasting Using Data Assimilation. Space Weather, 2021, 19, e2020SW002698.	1.3	15
17	The Influence of Spacecraft Latitudinal Offset on the Accuracy of Corotation Forecasts. Space Weather, 2021, 19, e2021SW002802.	1.3	5
18	Coronal Hole Detection and Open Magnetic Flux. Astrophysical Journal, 2021, 918, 21.	1.6	28

#	Article	IF	CITATIONS
19	Modeling the Observed Distortion of Multiple (Ghost) CME Fronts in STEREO Heliospheric Imagers. Astrophysical Journal Letters, 2021, 917, L16.	3.0	9
20	Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows. Astronomy and Astrophysics, 2021, 652, A105.	2.1	9
21	Using <i>in situ</i> solar-wind observations to generate inner-boundary conditions to outer-heliosphere simulations – I. Dynamic time warping applied to synthetic observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2575-2582.	1.6	4
22	Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 4. Polar Cap motions and origins of the Universal Time effect. Journal of Space Weather and Space Climate, 2021, 11, 15.	1.1	15
23	Graphical evidence for the solar coronal structure during the Maunder minimum: comparative study of the total eclipse drawings in 1706 and 1715. Journal of Space Weather and Space Climate, 2021, 11, 1.	1.1	29
24	Evolving solar wind flow properties of magnetic inversions observed by <i>Helios</i> . Monthly Notices of the Royal Astronomical Society, 2021, 501, 5379-5392.	1.6	3
25	Coherence of Coronal Mass Ejections in Near-Earth Space. Solar Physics, 2020, 295, 1.	1.0	10
26	Parker Solar Probe observations of suprathermal electron flux enhancements originating from Coronal Hole boundaries. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5273-5283.	1.6	5
27	Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. Journal of Space Weather and Space Climate, 2020, 10, 23.	1.1	42
28	Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather, 2020, 18, e2019SW002428.	1.3	6
29	Ensemble CME Modeling Constrained by Heliospheric Imager Observations. AGU Advances, 2020, 1, e2020AV000214.	2.3	20
30	Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun. Astrophysical Journal, 2020, 891, 165.	1.6	24
31	The Value of CME Arrival Time Forecasts for Space Weather Mitigation. Space Weather, 2020, 18, e2020SW002507.	1.3	12
32	Radial Evolution of Sunward Strahl Electrons in the Inner Heliosphere. Solar Physics, 2020, 295, 1.	1.0	12
33	Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind. Solar Physics, 2020, 295, 1.	1.0	10
34	A Computationally Efficient, Time-Dependent Model of the Solar Wind for Use as a Surrogate to Three-Dimensional Numerical Magnetohydrodynamic Simulations. Solar Physics, 2020, 295, 1.	1.0	44
35	Signatures of Coronal Loop Opening via Interchange Reconnection in the Slow Solar Wind at 1 AU. Solar Physics, 2020, 295, 1.	1.0	21
36	Quantifying the latitudinal representivity of in situ solar wind observations. Journal of Space Weather and Space Climate, 2020, 10, 8.	1.1	11

#	Article	IF	CITATIONS
37	The evolution of inverted magnetic fields through the inner heliosphere. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3642-3655.	1.6	29
38	Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport. Journal of Space Weather and Space Climate, 2020, 10, 30.	1.1	24
39	Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 3. Modelling. Journal of Space Weather and Space Climate, 2020, 10, 61.	1.1	16
40	The Solar Corona during the Total Eclipse on 1806 June 16: Graphical Evidence of the Coronal Structure during the Dalton Minimum. Astrophysical Journal, 2020, 900, 114.	1.6	21
41	Using the "Ghost Front―to Predict the Arrival Time and Speed of CMEs at Venus and Earth. Astrophysical Journal, 2020, 899, 143.	1.6	9
42	The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 902, L4.	3.0	11
43	The Development of a Space Climatology: 1. Solar Wind Magnetosphere Coupling as a Function of Timescale and the Effect of Data Gaps. Space Weather, 2019, 17, 133-156.	1.3	35
44	Thunderstorm occurrence at ten sites across Great Britain over 1884–1993. Geoscience Data Journal, 2019, 6, 222-233.	1.8	4
45	Time-of-day/time-of-year response functions of planetary geomagnetic indices. Journal of Space Weather and Space Climate, 2019, 9, A20.	1.1	22
46	Nearâ€Earth Solar Wind Forecasting Using Corotation From L5: The Error Introduced By Heliographic Latitude Offset. Space Weather, 2019, 17, 1105-1113.	1.3	16
47	On the Origin of Ortho-Gardenhose Heliospheric Flux. Solar Physics, 2019, 294, 1.	1.0	15
48	Direct Detection of Solar Angular Momentum Loss with the Wind Spacecraft. Astrophysical Journal Letters, 2019, 885, L30.	3.0	20
49	The Variation of Geomagnetic Storm Duration with Intensity. Solar Physics, 2019, 294, 1.	1.0	15
50	The Development of a Space Climatology: 2. The Distribution of Power Input Into the Magnetosphere on a 3â€Hourly Timescale. Space Weather, 2019, 17, 157-179.	1.3	12
51	Towards Construction of a Solar Wind "Reanalysis―Dataset: Application to the First Perihelion Pass of Parker Solar Probe. Solar Physics, 2019, 294, 1.	1.0	3
52	Extracting Innerâ€Heliosphere Solar Wind Speed Information From Heliospheric Imager Observations. Space Weather, 2019, 17, 925-938.	1.3	11
53	A Variational Approach to Data Assimilation in the Solar Wind. Space Weather, 2019, 17, 59-83.	1.3	43
54	Capturing Uncertainty in Magnetospheric Ultralow Frequency Wave Models. Space Weather, 2019, 17, 599-618.	1.3	9

#	Article	IF	CITATIONS
55	Using Ghost Fronts Within STEREO Heliospheric Imager Data to Infer the Evolution in Longitudinal Structure of a Coronal Mass Ejection. Space Weather, 2019, 17, 539-552.	1.3	11
56	Solar Angular Momentum Loss over the Past Several Millennia. Astrophysical Journal, 2019, 883, 67.	1.6	13
57	Fine-scale structure in cometary dust tails I: Analysis of striae in Comet C/2006ÂP1 (McNaught) through temporal mapping. Icarus, 2019, 319, 540-557.	1.1	10
58	The Development of a Space Climatology: 3. Models of the Evolution of Distributions of Space Weather Variables With Timescale. Space Weather, 2019, 17, 180-209.	1.3	17
59	ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms. Journal of Geophysical Research: Space Physics, 2018, 123, 2745-2771.	0.8	34
60	Long-term variations in the heliosphere. Proceedings of the International Astronomical Union, 2018, 13, 108-114.	0.0	2
61	Solar Wind and Heavy Ion Properties of Interplanetary Coronal Mass Ejections. Solar Physics, 2018, 293, 1.	1.0	19
62	A homogeneous <i>aa</i> index: 1. Secular variation. Journal of Space Weather and Space Climate, 2018, 8, A53.	1.1	24
63	A homogeneous <i>aa</i> index: 2. Hemispheric asymmetries and the equinoctial variation. Journal of Space Weather and Space Climate, 2018, 8, A58.	1.1	28
64	Assessing the Quality of Models of the Ambient Solar Wind. Space Weather, 2018, 16, 1644-1667.	1.3	44
65	Timeâ€Window Approaches to Spaceâ€Weather Forecast Metrics: A Solar Wind Case Study. Space Weather, 2018, 16, 1847-1861.	1.3	24
66	Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release. Astrophysical Journal Letters, 2018, 868, L14.	3.0	19
67	The State of the Solar Wind, Magnetosphere, and Ionosphere During the Maunder Minimum. Proceedings of the International Astronomical Union, 2018, 13, 247-250.	0.0	1
68	Space climate and space weather over the past 400 years: 2. Proxy indicators of geomagnetic storm and substorm occurrence. Journal of Space Weather and Space Climate, 2018, 8, A12.	1.1	27
69	What can the annual ¹⁰ Be solar activity reconstructions tell us about historic space weather?. Journal of Space Weather and Space Climate, 2018, 8, A23.	1.1	9
70	Ion Charge States and Potential Geoeffectiveness: The Role of Coronal Spectroscopy for Spaceâ€Weather Forecasting. Space Weather, 2018, 16, 694-703.	1.3	5
71	Global solar wind variations over the last four centuries. Scientific Reports, 2017, 7, 41548.	1.6	52
72	Forecasting the properties of the solar wind using simple pattern recognition. Space Weather, 2017, 15, 526-540.	1.3	37

#	Article	IF	CITATIONS
73	Testing the current paradigm for space weather prediction with heliospheric imagers. Space Weather, 2017, 15, 782-803.	1.3	22
74	Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or "Similar Day― Approach. Solar Physics, 2017, 292, 69.	1.0	31
75	Coronal mass ejections are not coherent magnetohydrodynamic structures. Scientific Reports, 2017, 7, 4152.	1.6	65
76	Data Assimilation in the Solar Wind: Challenges and First Results. Space Weather, 2017, 15, 1490-1510.	1.3	30
77	The Open Flux Problem. Astrophysical Journal, 2017, 848, 70.	1.6	135
78	Tracking CMEs using data from the Solar Stormwatch project; observing deflections and other properties. Space Weather, 2017, 15, 1125-1140.	1.3	8
79	Interplanetary magnetic field properties and variability near Mercury's orbit. Journal of Geophysical Research: Space Physics, 2017, 122, 7907-7924.	0.8	39
80	Probabilistic Solar Wind Forecasting Using Large Ensembles of Nearâ€Sun Conditions With a Simple Oneâ€Dimensional "Upwind†Scheme. Space Weather, 2017, 15, 1461-1474.	1.3	33
81	Sunward Strahl: A Method to Unambiguously Determine Open Solar Flux from In Situ Spacecraft Measurements Using Suprathermal Electron Data. Journal of Geophysical Research: Space Physics, 2017, 122, 10,980.	0.8	34
82	Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution. Journal of Geophysical Research: Space Physics, 2017, 122, 5870-5894.	0.8	10
83	The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. Journal of Space Weather and Space Climate, 2017, 7, A33.	1.1	54
84	The Role of Empirical Space-Weather Models (in a World of Physics-Based Numerical Simulations). Proceedings of the International Astronomical Union, 2017, 13, 254-257.	0.0	3
85	Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data. Annales Geophysicae, 2017, 35, 825-838.	0.6	8
86	Space climate and space weather over the past 400 years: 1. The power input to the magnetosphere. Journal of Space Weather and Space Climate, 2017, 7, A25.	1.1	29
87	Nearâ€Earth heliospheric magnetic field intensity since 1750: 1. Sunspot and geomagnetic reconstructions. Journal of Geophysical Research: Space Physics, 2016, 121, 6048-6063.	0.8	33
88	Magnetic field inversions at 1ÂAU: Comparisons between mapping predictions and observations. Journal of Geophysical Research: Space Physics, 2016, 121, 10,728.	0.8	2
89	Tests of Sunspot Number Sequences: 2. Using Geomagnetic and Auroral Data. Solar Physics, 2016, 291, 2811-2828.	1.0	21
90	A New Calibrated Sunspot Group Series Since 1749: Statistics of Active Day Fractions. Solar Physics, 2016, 291, 2685-2708.	1.0	101

#	Article	IF	CITATIONS
91	Nearâ€Earth heliospheric magnetic field intensity since 1750: 2. Cosmogenic radionuclide reconstructions. Journal of Geophysical Research: Space Physics, 2016, 121, 6064-6074.	0.8	19
92	Remember, remember the fifth of November: Was that thunder I heard or not?. Weather, 2016, 71, 134-137.	0.6	1
93	Tests of Sunspot Number Sequences: 4. Discontinuities Around 1946 in Various Sunspot Number and Sunspot-Group-Number Reconstructions. Solar Physics, 2016, 291, 2843-2867.	1.0	12
94	AN ASSESSMENT OF SUNSPOT NUMBER DATA COMPOSITES OVER 1845–2014. Astrophysical Journal, 2016, 824, 54.	1.6	34
95	Tests of Sunspot Number Sequences: 3. Effects of Regression Procedures on the Calibration of Historic Sunspot Data. Solar Physics, 2016, 291, 2829-2841.	1.0	34
96	Tests of Sunspot Number Sequences: 1. Using Ionosonde Data. Solar Physics, 2016, 291, 2785-2809.	1.0	20
97	On the origins and timescales of geoeffective IMF. Space Weather, 2016, 14, 406-432.	1.3	65
98	DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?. Astrophysical Journal, 2016, 818, 197.	1.6	23
99	Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project. Space Weather, 2015, 13, 709-725.	1.3	14
100	Lightning as a spaceâ€weather hazard: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophysical Research Letters, 2015, 42, 9624-9632.	1.5	23
101	Statistical study of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2015, 120, 43-60.	0.8	106
102	The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. Astronomy and Astrophysics, 2015, 581, A95.	2.1	158
103	The heliospheric Hale cycle over the last 300 years and its implications for a "lost―late 18th century solar cycle. Journal of Space Weather and Space Climate, 2015, 5, A30.	1.1	17
104	Validation of a priori CME arrival predictions made using realâ€ŧime heliospheric imager observations. Space Weather, 2015, 13, 35-48.	1.3	27
105	INFERRING THE STRUCTURE OF THE SOLAR CORONA AND INNER HELIOSPHERE DURING THE MAUNDER MINIMUM USING GLOBAL THERMODYNAMIC MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2015, 802, 105.	1.6	65
106	NEAR-EARTH COSMIC RAY DECREASES ASSOCIATED WITH REMOTE CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 801, 5.	1.6	11
107	Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux. Annales Geophysicae, 2014, 32, 383-399.	0.6	60
108	Centennial variations in sunspot number, open solar flux and streamer belt width: 3. Modeling. Journal of Geophysical Research: Space Physics, 2014, 119, 5193-5209.	0.8	35

#	Article	IF	CITATIONS
109	Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data. Journal of Geophysical Research: Space Physics, 2014, 119, 5183-5192.	0.8	24
110	Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. Journal of Geophysical Research: Space Physics, 2014, 119, 5172-5182.	0.8	51
111	Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 3: Improved representation of solar cycle 11. Annales Geophysicae, 2014, 32, 367-381.	0.6	22
112	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	0.9	56
113	Evidence for solar wind modulation of lightning. Environmental Research Letters, 2014, 9, 055004.	2.2	49
114	Galactic cosmic rays in the heliosphere. Astronomy and Geophysics, 2014, 55, 5.23-5.25.	0.1	6
115	Modulation of UK lightning by heliospheric magnetic field polarity. Environmental Research Letters, 2014, 9, 115009.	2.2	28
116	The 22-Year Hale Cycle in Cosmic Ray Flux – Evidence for Direct Heliospheric Modulation. Solar Physics, 2014, 289, 407-421.	1.0	53
117	Galactic Cosmic Ray Modulation near the Heliospheric Current Sheet. Solar Physics, 2014, 289, 2653-2668.	1.0	29
118	Comparison of interplanetary signatures of streamers and pseudostreamers. Journal of Geophysical Research: Space Physics, 2014, 119, 4157-4163.	0.8	18
119	IMPLICATIONS OF THE RECENT LOW SOLAR MINIMUM FOR THE SOLAR WIND DURING THE MAUNDER MINIMUM. Astrophysical Journal Letters, 2014, 781, L7.	3.0	24
120	Solar cycle evolution of dipolar and pseudostreamer belts and their relation to the slow solar wind. Journal of Geophysical Research: Space Physics, 2014, 119, 36-46.	0.8	40
121	The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project. Space Weather, 2014, 12, 657-674.	1.3	25
122	Ensemble downscaling in coupled solar windâ€magnetosphere modeling for space weather forecasting. Space Weather, 2014, 12, 395-405.	1.3	27
123	Solar cycle evolution of dipolar and pseudostreamer belts and their relation to the slow solar wind. Journal of Geophysical Research: Space Physics, 2014, 119, n/a-n/a.	0.8	1
124	Effects of Thomson-Scattering Geometry on White-Light Imaging of an Interplanetary Shock: Synthetic Observations from Forward Magnetohydrodynamic Modelling. Solar Physics, 2013, 285, 369-389.	1.0	14
125	Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth. Space Weather, 2013, 11, 245-261.	1.3	15
126	Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers. Journal of Geophysical Research: Space Physics, 2013, 118, 1868-1879.	0.8	60

#	Article	IF	CITATIONS
127	Comment on "What causes the flux excess in the heliospheric magnetic field?―by E. J. Smith. Journal of Geophysical Research: Space Physics, 2013, 118, 1880-1887.	0.8	8
128	Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field. Annales Geophysicae, 2013, 31, 1979-1992.	0.6	32
129	Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 1: A new geomagnetic data composite. Annales Geophysicae, 2013, 31, 1957-1977.	0.6	38
130	USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH. Astrophysical Journal, 2013, 777, 32.	1.6	10
131	The Heliospheric Magnetic Field. Living Reviews in Solar Physics, 2013, 10, 1.	7.8	157
132	A 27 day persistence model of nearâ€Earth solar wind conditions: A long leadâ€time forecast and a benchmark for dynamical models. Space Weather, 2013, 11, 225-236.	1.3	58
133	Heliospheric modulation of galactic cosmic rays during grand solar minima: Past and future variations. Geophysical Research Letters, 2012, 39, .	1.5	61
134	Interchange Reconnection: Remote Sensing of Solar Signature and Role in Heliospheric Magnetic Flux Budget. Space Science Reviews, 2012, 172, 201-208.	3.7	20
135	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 2012, 117, .	3.3	143
136	Solar cycle 24: what is the Sun up to?. Astronomy and Geophysics, 2012, 53, 3.09-3.15.	0.1	23
137	Cyclic loss of open solar flux since 1868: The link to heliospheric current sheet tilt and implications for the Maunder Minimum. Journal of Geophysical Research, 2012, 117, .	3.3	64
138	Predicting the arrival of highâ€speed solar wind streams at Earth using the STEREO Heliospheric Imagers. Space Weather, 2012, 10, .	1.3	14
139	Observational Tracking of the 2D Structure of Coronal Mass Ejections Between the Sun and 1 AU. Solar Physics, 2012, 279, 517-535.	1.0	23
140	Implications of Non-cylindrical Flux Ropes for Magnetic Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope Events. Solar Physics, 2012, 278, 435-446.	1.0	29
141	EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. II. IN SITU OBSERVATIONS. Astrophysical Journal, 2011, 732, 117.	1.6	34
142	EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. I. GEOMETRICAL ANALYSIS. Astrophysical Journal, 2011, 731, 109.	1.6	41
143	How is open solar magnetic flux lost over the solar cycle?. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
144	Centennial changes in the heliospheric magnetic field and open solar flux: The consensus view from geomagnetic data and cosmogenic isotopes and its implications. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	45

#	Article	IF	CITATIONS
145	Solar cycle 24: Implications for energetic particles and long-term space climate change. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	44
146	The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	45
147	Predicting space climate change. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	65
148	The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. Journal of Geophysical Research, 2011, 116, .	3.3	56
149	Magnetic Discontinuities in the Near-Earth Solar Wind: Evidence of In-Transit Turbulence or Remnants ofÂCoronal Structure?. Solar Physics, 2011, 269, 411-420.	1.0	44
150	In Situ Signatures of Interchange Reconnection between Magnetic Clouds and Open Magnetic Fields: AÂMechanism for the Erosion of Polar Coronal Holes?. Solar Physics, 2011, 270, 285-296.	1.0	13
151	Forward modelling to determine the observational signatures of white-light imaging and interplanetary scintillation for the propagation of an interplanetary shock in the ecliptic plane. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1270-1280.	0.6	6
152	The solar influence on the probability of relatively cold UK winters in the future. Environmental Research Letters, 2011, 6, 034004.	2.2	18
153	Interchange Reconnection: Remote Sensing of Solar Signature and Role in Heliospheric Magnetic Flux Budget. Space Sciences Series of ISSI, 2011, , 201-208.	0.0	0
154	Cone model-based SEP event calculations for applications to multipoint observations. Advances in Space Research, 2010, 46, 1-21.	1.2	61
155	The Variation of Solar Wind Correlation Lengths Over Three Solar Cycles. Solar Physics, 2010, 262, 191-198.	1.0	34
156	From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection. Solar Physics, 2010, 265, 49-127.	1.0	63
157	PROBING THE LARGE-SCALE TOPOLOGY OF THE HELIOSPHERIC MAGNETIC FIELD USING JOVIAN ELECTRONS. Astrophysical Journal, 2010, 714, 1617-1623.	1.6	6
158	Numerical simulation of the 12 May 1997 CME Event: The role of magnetic reconnection. Journal of Geophysical Research, 2010, 115, .	3.3	40
159	Suprathermal electron flux peaks at stream interfaces: Signature of solar wind dynamics or tracer for open magnetic flux transport on the Sun?. Journal of Geophysical Research, 2010, 115, .	3.3	16
160	Galactic cosmic ray radiation hazard in the unusual extended solar minimum between solar cycles 23 and 24. Space Weather, 2010, 8, n/a-n/a.	1.3	31
161	OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND. Astrophysical Journal Letters, 2010, 714, L128-L132.	3.0	90
162	THE ACCURACY OF USING THE <i>ULYSSES</i> RESULT OF THE SPATIAL INVARIANCE OF THE RADIAL HELIOSPHERIC FIELD TO COMPUTE THE OPEN SOLAR FLUX. Astrophysical Journal, 2009, 701, 964-973.	1.6	34

#	Article	IF	CITATIONS
163	The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds. Annales Geophysicae, 2009, 27, 4057-4067.	0.6	4
164	The Formation of Large-Scale Current Sheets withinÂMagnetic Clouds. Solar Physics, 2009, 260, 207-217.	1.0	24
165	Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass. Journal of Geophysical Research, 2009, 114, .	3.3	33
166	Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. Journal of Geophysical Research, 2009, 114, .	3.3	60
167	The radial width of a Coronal Mass Ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO. Annales Geophysicae, 2009, 27, 4349-4358.	0.6	44
168	Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physicsâ€based schemes with 8 years of L1 observations. Space Weather, 2008, 6, .	1.3	105
169	Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang–Sheeley–Arge model. Journal of Geophysical Research, 2008, 113, .	3.3	42
170	Ambient solar wind's effect on ICME transit times. Geophysical Research Letters, 2008, 35, .	1.5	32
171	Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field. Geophysical Research Letters, 2008, 35, .	1.5	58
172	Suprathermal electron evolution in a Parker spiral magnetic field. Journal of Geophysical Research, 2008, 113, .	3.3	31
173	Combining remote and in situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction. Journal of Geophysical Research, 2008, 113, .	3.3	29
174	Estimating total heliospheric magnetic flux from singleâ€point in situ measurements. Journal of Geophysical Research, 2008, 113, .	3.3	62
175	Role of coronal mass ejections in the heliospheric Hale cycle. Geophysical Research Letters, 2007, 34, .	1.5	44
176	Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	42
177	Predicting magnetospheric dynamics with a coupled Sunâ€ŧoâ€Earth model: Challenges and first results. Space Weather, 2007, 5, .	1.3	18
178	A kinematically distorted flux rope model for magnetic clouds. Journal of Geophysical Research, 2006, 111, .	3.3	60
179	Coronal mass ejections and magnetic flux buildup in the heliosphere. Journal of Geophysical Research, 2006, 111, .	3.3	109
180	Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations. Journal of Geophysical Research, 2006, 111, .	3.3	40

#	Article	IF	CITATIONS
181	Understanding electron heat flux signatures in the solar wind. Journal of Geophysical Research, 2005, 110, .	3.3	49
182	Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. Journal of Geophysical Research, 2005, 110, .	3.3	82
183	An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model. Journal of Geophysical Research, 2005, 110, .	3.3	86
184	Predictions of the arrival time of Coronal Mass Ejections at 1AU: an analysis of the causes of errors. Annales Geophysicae, 2004, 22, 661-671.	0.6	64
185	Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections. Annales Geophysicae, 2004, 22, 4397-4406.	0.6	43
186	On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. Journal of Geophysical Research, 2004, 109, .	3.3	21
187	Correlation of magnetic field intensities and solar wind speeds of events observed by ACE. Journal of Geophysical Research, 2002, 107, SSH 1-1.	3.3	18
188	Assessment of different sunspot number series using the cosmogenic isotope ⁴⁴ Ti in meteorites. Monthly Notices of the Royal Astronomical Society, 0, , stx190.	1.6	15
189	A statistical evaluation of ballistic backmapping for the slow solar wind: The interplay of solar wind acceleration and corotation. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	9
190	Towards GIC forecasting: Statistical downscaling of the geomagnetic field to improve geoelectric field forecasts. Space Weather, 0, , e2021SW002903.	1.3	0
191	Quantifying the effect of ICME removal and observation age for in situ solar wind data assimilation. Space Weather, 0, , .	1.3	3