Marta FernÃ;ndez-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167783/publications.pdf

Version: 2024-02-01

202 papers 6,988 citations

37 h-index

94433

⁷⁶⁹⁰⁰ **74**

g-index

204 all docs

204 docs citations

times ranked

204

8862 citing authors

#	Article	IF	Citations
1	Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. Coatings, 2022, 12, 144.	2.6	21
2	Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polymer Testing, 2022, 109, 107541.	4.8	13
3	Tailoring size and release kinetics of $\langle b \rangle \langle i \rangle \hat{l}^2 \hat{l}^1 \langle i \rangle \langle b \rangle$ -hybrid carrageenan microgels via a surfactant-assisted technique. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 338-344.	3.4	3
4	Succinylated Starches for Dye Removal. Starch/Staerke, 2021, 73, .	2.1	10
5	Biobased polymers derived from itaconic acid bearing clickable groups with potent antibacterial activity and negligible hemolytic activity. Polymer Chemistry, 2021, 12, 3190-3200.	3.9	19
6	Incorporation of Poly(Itaconic Acid) with Quaternized Thiazole Groups on Gelatin-Based Films for Antimicrobial-Active Food Packaging. Polymers, 2021, 13, 200.	4.5	20
7	Accelerated disintegration of compostable Ecovio polymer by using ZnO particles as filler. Polymer Degradation and Stability, 2021, 185, 109501.	5.8	24
8	Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromolecular Bioscience, 2021, 21, e2100156.	4.1	29
9	Development of Highly Crystalline Polylactic Acid with \hat{l}^2 -Crystalline Phase from the Induced Alignment of Electrospun Fibers. Polymers, 2021, 13, 2860.	4.5	17
10	Effect of chemical treatment on thermophysical behavior of Spanish broom flour-reinforced polypropylene biocomposite. Journal of Polymer Engineering, 2021, 41, 9-18.	1.4	2
11	Antibacterial Polymers Based on Poly(2-hydroxyethyl methacrylate) and Thiazolium Groups with Hydrolytically Labile Linkages Leading to Inactive and Low Cytotoxic Compounds. Materials, 2021, 14, 7477.	2.9	4
12	Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials, 2020, 10, 22.	4.1	40
13	Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnology Advances, 2020, 43, 107586.	11.7	40
14	Development of photoresponsive coumarin-modified ethylene-co-vinyl alcohol copolymers with antifouling behavior. Reactive and Functional Polymers, 2020, 157, 104750.	4.1	8
15	Chemical Hydrogels Bearing Thiazolium Groups with a Broad Spectrum of Antimicrobial Behavior. Polymers, 2020, 12, 2853.	4.5	10
16	Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 2020, 13, 4910.	2.9	25
17	Functional properties of photo-crosslinkable biodegradable polyurethane nanocomposites. Polymer Degradation and Stability, 2020, 178, 109204.	5.8	10
18	Biodegradable and Antimicrobial PLA–OLA Blends Containing Chitosan-Mediated Silver Nanoparticles with Shape Memory Properties for Potential Medical Applications. Nanomaterials, 2020, 10, 1065.	4.1	16

#	Article	IF	CITATIONS
19	New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron, 2020, 187, 114640.	2.2	27
20	Modified Starch as a Filter Controller in Water-Based Drilling Fluids. Materials, 2020, 13, 2794.	2.9	20
21	Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials. Nanomaterials, 2020, 10, 1218.	4.1	19
22	Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers, 2020, 12, 972.	4.5	17
23	Redox initiation in semicontinuous polymerization to search for specific mechanical properties of copolymers. E-Polymers, 2020, 20, 613-623.	3.0	o
24	Fatâ€Replacer Properties of Oxidized Cassava Starch Using Hydrogen Peroxide/Sodium Bicarbonate Redox System in Mayonnaise Formulation and Its Stability. Starch/Staerke, 2019, 71, 1900112.	2.1	5
25	Porous Microstructured Surfaces with pHâ€√riggered Antibacterial Properties. Macromolecular Bioscience, 2019, 19, e1900127.	4.1	8
26	Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. Nanomaterials, 2019, 9, 1548.	4.1	31
27	Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials. ACS Applied Bio Materials, 2019, 2, 4714-4719.	4.6	23
28	Influence of Polymer Composition and Substrate on the Performance of Bioinspired Coatings with Antibacterial Activity. Coatings, 2019, 9, 733.	2.6	3
29	Lower critical solution temperature sensitivity to structural changes in poly(N â€isopropyl acrylamide) homopolymers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1386-1393.	2.1	17
30	Environmentally Friendly Fertilizers Based on Starch Superabsorbents. Materials, 2019, 12, 3493.	2.9	7
31	Adhesive antibacterial coatings based on copolymers bearing thiazolium cationic groups and catechol moieties as robust anchors. Progress in Organic Coatings, 2019, 136, 105272.	3.9	12
32	Hydrogels based on oxidized starches from different botanical sources for release of fertilizers. International Journal of Biological Macromolecules, 2019, 136, 813-822.	7.5	33
33	Influence of side chain structure on the thermal and antimicrobial properties of cationic methacrylic polymers. European Polymer Journal, 2019, 117, 86-93.	5.4	12
34	Polymeric Materials: Surfaces, Interfaces and Bioapplications. Materials, 2019, 12, 1312.	2.9	4
35	Preparation of epoxidized sunflower oil metal soap derivatives and their use asheat stabilizers for polyvinyl chloride. Turkish Journal of Chemistry, 2019, 43, 582-593.	1.2	3
36	Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers, 2019, 11, 606.	4.5	19

#	Article	IF	CITATIONS
37	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	2.9	123
38	Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydrate Polymers, 2018, 194, 375-383.	10.2	86
39	The thermal and thermomechanical behaviors of Spartium junceum flour reinforced polypropylene composites: effects of treatment and flour content. Composite Interfaces, 2018, 25, 1067-1089.	2.3	11
40	Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery. Journal of Polymers and the Environment, 2018, 26, 728-739.	5.0	22
41	Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 2018, 111, 317-328.	5.2	73
42	Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. International Journal of Molecular Sciences, 2018, 19, 4120.	4.1	15
43	Poly(ionic liquid)s as antimicrobial materials. European Polymer Journal, 2018, 105, 135-149.	5.4	78
44	Effect of Camphorquinone Concentration in Physical-Mechanical Properties of Experimental Flowable Resin Composites. BioMed Research International, 2018, 2018, 1-10.	1.9	12
45	Photo-crosslinkable polyurethanes reinforced with coumarin modified silica nanoparticles for photo-responsive coatings. Progress in Organic Coatings, 2018, 123, 63-74.	3.9	26
46	Antimicrobial Porous Surfaces Prepared by Breath Figures Approach. Materials, 2018, 11, 1266.	2.9	15
47	Tailoring Macromolecular Structure of Cationic Polymers towards Efficient Contact Active Antimicrobial Surfaces. Polymers, 2018, 10, 241.	4.5	19
48	New quaternized poly(4-vinylpyridine-co-divinylbenzene) material containing nickel(II) Schiff base complex: synthesis, thermogravimetry, and application for heterogeneous electrooxidation of ethanol. Research on Chemical Intermediates, 2018, 44, 6831-6846.	2.7	8
49	Influence of Poly(εâ€caprolactone) Molecular Weight and Coumarin Amount on Photoâ€Responsive Polyurethane Properties. Macromolecular Materials and Engineering, 2017, 302, 1600515.	3.6	12
50	Antimicrobial surfaces obtained from blends of block copolymers synthesized by simultaneous ATRP and click chemistry reactions. European Polymer Journal, 2017, 93, 53-62.	5.4	9
51	Silica-nanocomposites of photo-crosslinkable poly(urethane)s based on poly(Îμ-caprolactone) and coumarin. European Polymer Journal, 2017, 93, 21-32.	5.4	13
52	Revisiting the role of calcite in <i>Spondylus crassisquama</i> shell. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 151-160.	0.9	2
53	Thermomechanical properties of silica-polyacrylic nanocomposites. MRS Advances, 2017, 2, 2745-2750.	0.9	0
54	Contact Active Antimicrobial Coatings Prepared by Polymer Blending. Macromolecular Bioscience, 2017, 17, 1700258.	4.1	19

#	Article	lF	Citations
55	Antimicrobial Polymers in the Nano-World. Nanomaterials, 2017, 7, 48.	4.1	121
56	Removal of heavy metal ions in water by starch esters. Starch/Staerke, 2016, 68, 37-46.	2.1	40
57	Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics. Journal of Polymers and the Environment, 2016, 24, 343-355.	5.0	36
58	Reversible crosslinked low density polyethylenes: structure and thermal properties. Journal of Polymer Research, 2016, 23, 1.	2.4	11
59	Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers. Colloids and Surfaces B: Biointerfaces, 2016, 140, 94-103.	5.0	17
60	The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal, 2015, 65, 46-62.	5.4	136
61	Heavy metal (Cd ²⁺ , Ni ²⁺ , Pb ²⁺ and Ni ²⁺) adsorption in aqueous solutions by oxidized starches. Polymers for Advanced Technologies, 2015, 26, 147-152.	3.2	26
62	Functional surfaces obtained from emulsion polymerization using antimicrobial glycosylated block copolymers as surfactants. Polymer Chemistry, 2015, 6, 6171-6181.	3.9	18
63	Glycopolymeric Materials for Advanced Applications. Materials, 2015, 8, 2276-2296.	2.9	24
64	Antimicrobial polymethacrylates based on quaternized 1,3-thiazole and 1,2,3-triazole side-chain groups. Polymer Chemistry, 2015, 6, 3449-3459.	3.9	69
65	High Efficiency Antimicrobial Thiazolium and Triazolium Side-Chain Polymethacrylates Obtained by Controlled Alkylation of the Corresponding Azole Derivatives. Biomacromolecules, 2015, 16, 1844-1854.	5.4	51
66	Influence of spacer group on the structure and thermal properties of copolymers based on acrylonitrile and methacrylic 1,3-thiazole and 1,2,3-triazole derivatives. European Polymer Journal, 2015, 71, 401-411.	5.4	5
67	Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems. Acta Biomaterialia, 2015, 25, 86-96.	8.3	22
68	Nanostructuration by Self-Assembly in $\langle i \rangle N \langle i \rangle$ -Alkyl Thiazolium and Triazolium Side-Chain Polymethacrylates. Macromolecules, 2015, 48, 7180-7193.	4.8	20
69	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. European Polymer Journal, 2015, 71, 412-422.	5.4	19
70	Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. LWT - Food Science and Technology, 2015, 60, 802-810.	5.2	27
71	Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized DMAEMA. Biomacromolecules, 2015, 16, 295-303.	5.4	74
72	Chemical modification of block copolymers based on 2-hydroxyethyl acrylate to obtain amphiphilic glycopolymers. European Polymer Journal, 2015, 62, 167-178.	5.4	11

#	Article	IF	CITATIONS
73	Wellâ€Defined Glycopolymers via RAFT Polymerization: Stabilization of Gold Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 1915-1924.	2.2	18
74	Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science, 2014, 39, 510-554.	24.7	222
7 5	Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization. Journal of Colloid and Interface Science, 2014, 417, 336-345.	9.4	12
76	Direct preparation of PNIPAM coating gold nanoparticles by catechol redox and surface adhesion chemistry. RSC Advances, 2014, 4, 11740-11749.	3.6	31
77	Tuning the Pore Composition by Two Simultaneous Interfacial Self-Assembly Processes: Breath Figures and Coffee Stain. Langmuir, 2014, 30, 6134-6141.	3.5	13
78	Formation of Multigradient Porous Surfaces for Selective Bacterial Entrapment. Biomacromolecules, 2014, 15, 3338-3348.	5.4	19
79	Preparation and Molecular Characterization of Chitosans Obtained from Shrimp (<i>Litopenaeus) Tj ETQq1 1 0.7</i>	784314 rgi 3.1	BT JOverloc <mark>k</mark> 1
80	Surface modification of magnetite hybrid particles with carbohydrates and gold nanoparticlesvia "click―chemistry. Polymer Chemistry, 2013, 4, 986-995.	3.9	15
81	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	3.6	10
82	Fabrication of Structured Porous Films by Breath Figures and Phase Separation Processes: Tuning the Chemistry and Morphology Inside the Pores Using Click Chemistry. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 3943-3951.	8.0	37
83	Amphiphilic polymers bearing gluconolactone moieties: Synthesis and long side-chain crystalline behavior. Carbohydrate Polymers, 2013, 94, 755-764.	10.2	10
84	Controlled block glycopolymers able to bind specific proteins. Journal of Polymer Science Part A, 2013, 51, 1337-1347.	2.3	28
85	Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polymer Chemistry, 2013, 4, 558-567.	3.9	50
86	Catecholic Chemistry To Obtain Recyclable and Reusable Hybrid Polymeric Particles as Catalytic Systems. Macromolecules, 2013, 46, 2951-2962.	4.8	18
87	Control of the chemistry outside the pores in honeycomb patterned films. Polymer Chemistry, 2013, 4, 4024.	3.9	30
88	CHAPTER 1. Introduction to Antimicrobial Polymeric Materials. RSC Polymer Chemistry Series, 2013, , 1-21.	0.2	8
89	Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 2013, 14, 9249-9266.	4.1	60
90	Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir, 2012, 28, 9778-9787.	3.5	44

#	Article	IF	CITATIONS
91	Preparation of glycopolymerâ€coated magnetite nanoparticles for hyperthermia treatment. Journal of Polymer Science Part A, 2012, 50, 5087-5096.	2.3	29
92	Titanium Dioxide–Polymer Nanocomposites with Advanced Properties. , 2012, , 119-149.		3
93	Magnetite–Polypeptide Hybrid Materials Decorated with Gold Nanoparticles: Study of Their Catalytic Activity in 4-Nitrophenol Reduction. Journal of Physical Chemistry C, 2012, 116, 24717-24725.	3.1	67
94	Synthesis and lectin recognition studies of glycosylated polystyrene microspheres functionalized via thiol–para-fluorine "click―reaction. Polymer Chemistry, 2012, 3, 3282.	3.9	24
95	Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A, 2012, 50, 851-859.	2.3	28
96	Interfacial agent effect on rheological response and crystallite characteristics in germicidal polypropylene/titanium dioxide nanocomposites. Polymer International, 2012, 61, 1655-1665.	3.1	3
97	Glycopolymers obtained by chemical modification of wellâ€defined block copolymers. Journal of Polymer Science Part A, 2012, 50, 2565-2577.	2.3	15
98	Rheological and structural details of biocidal iPP-TiO2 nanocomposites. European Polymer Journal, 2012, 48, 586-596.	5.4	19
99	Influence of glycopolymers structure on the copolymerization reaction and on their binding behavior with lectins. European Polymer Journal, 2012, 48, 963-973.	5.4	10
100	Polymeric materials with antimicrobial activity. Progress in Polymer Science, 2012, 37, 281-339.	24.7	1,055
101	Glycoparticles and bioactive films prepared by emulsion polymerization using a well-defined block glycopolymer stabilizer. Soft Matter, 2011, 7, 2493.	2.7	25
102	Block Copolymer Surfactants in Emulsion Polymerization: Influence of the Miscibility of the Hydrophobic Block on Kinetics, Particle Morphology, and Film Formation. Macromolecules, 2011, 44, 4282-4290.	4.8	35
103	Rheological behavior of aminosaccharide-based glycopolymers obtained from ethylene-vinyl alcohol copolymers. Polymer Journal, 2011, 43, 205-213.	2.7	4
104	Gluconolactoneâ€derivated polymers: Copolymerization, thermal properties, and their potential use as polymeric surfactants. Journal of Polymer Science Part A, 2011, 49, 526-536.	2.3	12
105	Amphiphilic block glycopolymers via atom transfer radical polymerization: Synthesis, selfâ€assembly and biomolecular recognition. Journal of Polymer Science Part A, 2011, 49, 2627-2635.	2.3	18
106	Metallocene ethyleneâ€ <i>co</i> â€(5,7â€dimethyloctaâ€1, 6â€diene) copolymers crosslinked using electron bei irradiation: a tunable alternative. Polymer International, 2011, 60, 1309-1317.	am 3.1	3
107	Statistical Glycopolymers Based on 2â€Hydroxyethyl Methacrylate: Copolymerization, Thermal Properties, and Lectin Interaction Studies. Macromolecular Chemistry and Physics, 2011, 212, 1294-1304.	2.2	9
108	Master curve and time–temperature–transformation cure diagram of a polyfunctional epoxy acrylic resin. Journal of Applied Polymer Science, 2011, 120, 2166-2172.	2.6	3

#	Article	IF	CITATIONS
109	Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental, 2011, 104, 346-352.	20.2	42
110	Glycopolymers with glucosamine pendant groups: Copolymerization, physico-chemical and interaction properties. Reactive and Functional Polymers, 2011, 71, 1-10.	4.1	18
111	Honeycomb structured porous interfaces as templates for protein adhesion. Journal of Physics: Conference Series, 2010, 252, 012002.	0.4	1
112	Rheological cure characterization of a polyfunctional epoxy acrylic resin. Reactive and Functional Polymers, 2010, 70, 761-766.	4.1	42
113	Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites. European Polymer Journal, 2010, 46, 397-403.	5.4	12
114	Specific lectin interactions and temperatureâ€induced reversible gels in novel waterâ€soluble glycopolymers bearing maltotrionolactone pendant groups. Journal of Polymer Science Part A, 2010, 48, 719-729.	2.3	10
115	Wellâ€controlled amphiphilic block glycopolymers and their molecular recognition with lectins. Journal of Polymer Science Part A, 2010, 48, 3623-3631.	2.3	38
116	Fabrication of Honeycomb-Structured Porous Surfaces Decorated with Glycopolymers. Langmuir, 2010, 26, 8552-8558.	3.5	52
117	Molecular recognition capability and rheological behavior in solution of novel lactone-based glycopolymers. European Polymer Journal, 2009, 45, 3176-3186.	5.4	9
118	Crosslinking in metallocene ethylene-co-5,7-dimethylocta-1,6-diene copolymers initiated by electron-beam irradiation. Polymer, 2009, 50, 1095-1102.	3.8	14
119	Curing kinetic study using a well-controlled multifunctional copolymer based on glycidyl methacrylate. European Polymer Journal, 2009, 45, 2665-2673.	5.4	22
120	Boosting TiO2-anatase antimicrobial activity: Polymer-oxide thin films. Applied Catalysis B: Environmental, 2009, 89, 441-447.	20.2	81
121	Biocidal Capability Optimization in Organicâ [*] Inorganic Nanocomposites Based on Titania. Environmental Science & Environmental Science & Environmenta	10.0	23
122	Recognition Abilities and Development of Heat-Induced Entangled Networks in Lactone-Derived Glycopolymers Obtained from Ethylene-vinyl Alcohol Copolymers. Biomacromolecules, 2009, 10, 1828-1837.	5.4	29
123	Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties. Journal of Physical Chemistry C, 2009, 113, 9182-9190.	3.1	66
124	Synthesis and characterization of functional gradient copolymers of glycidyl methacrylate and butyl acrylate. Reactive and Functional Polymers, 2008, 68, 1384-1391.	4.1	18
125	Synthesis of poly(di[methylamine]ethyl methacrylate)â€ <i>b</i> â€ <i>b</i> êpoly(cyclohexyl) Tj ETQq1 1 0.784314 rgBT /0 ATRP: Condensedâ€phase and solution properties. Journal of Polymer Science Part A, 2008, 46, 85-92.	Overlock 1 2.3	0 Tf 50 107 T 9
126	Glycopolymers resulting from ethylene–vinyl alcohol copolymers: Synthetic approach, characterization, and interactions with lectins. Journal of Polymer Science Part A, 2008, 46, 7238-7248.	2.3	26

#	Article	IF	Citations
127	Thermal and Morphological Behaviour of Wellâ€Defined Amphiphilic Triblock Copolymers Based on Cyclohexyl and Di(ethylene glycol) Methyl Ether Methacrylates. Macromolecular Chemistry and Physics, 2008, 209, 184-194.	2.2	2
128	Selfâ€Sterilized EVOHâ€TiO ₂ Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 2008, 18, 1949-1960.	14.9	111
129	Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene–vinyl alcohol copolymers. Polymer, 2008, 49, 2801-2807.	3.8	35
130	Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 2008, 128, 851-854.	3.1	4
131	Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation. Applied Catalysis B: Environmental, 2008, 84, 87-93.	20.2	102
132	Glycopolymers resultant from ethylene–vinyl alcohol copolymers: Degradation and rheological behavior in bulk. European Polymer Journal, 2008, 44, 2194-2201.	5.4	16
133	Pressurization of some starches compared to heating: Calorimetric, thermo-optical and X-ray examination. Food Research International, 2008, 41, 683-692.	6.2	14
134	Study on UV Excitation Properties of Y2O3:Ln3+ (Ln = Eu3+ or Tb3+) Luminescent Nanomaterials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1443-1448.	0.9	18
135	Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter, 2007, 3, 725-731.	2.7	51
136	High-Performance Dual-Action Polymerâ^'TiO ₂ Nanocomposite Films via Melting Processing. Nano Letters, 2007, 7, 2529-2534.	9.1	121
137	Selfâ€Assembly of ATRPâ€Synthesized PCHâ€ <i>b</i> â€P <i>t</i> BAâ€ <i>b</i> â€PCH Triblock Copolymers Obser Timeâ€Resolved SAXS. Macromolecular Chemistry and Physics, 2007, 208, 2654-2664.	ved by	8
138	Synthesis and characterization of novel glycopolymers based on ethyl α-hydroxymethylacrylate. Carbohydrate Polymers, 2007, 68, 89-94.	10.2	11
139	Aggregation and solubilization of organic solvents and petrol/gasoline in water mediated by block copolymers. European Polymer Journal, 2007, 43, 4583-4592.	5.4	6
140	Physical properties of poly(cyclohexyl methacrylate)-b-poly(iso-butyl acrylate)-b-poly(cyclohexyl) Tj ETQq0 0 0 rgB7 48, 5581-5589.	「/Overlocl 3.8	x 10 Tf 50 22 3
141	Ethylene-vinyl alcohol copolymers partially modified with benzoate groups: Study of their polymorphic behavior. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1026-1036.	2.1	9
142	Free-radical copolymerization of ethyl α-hydroxymethylacrylate with methyl methacrylate by reversible addition–fragmentation chain transfer. Journal of Polymer Science Part A, 2006, 44, 5618-5629.	2.3	15
143	Synthesis and characterization of glycidyl methacrylate/butyl acrylate copolymers obtained at a low temperature by atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1807-1816.	2.3	46
144	Small-angle X-ray scattering and linear melt rheologyof poly(tert-butyl acrylate-g-styrene) graft copolymers. Polymer, 2006, 47, 1487-1495.	3.8	16

#	Article	IF	Citations
145	Copolymers of acrylic acid with 2-acryloyloxyethyl 2,4-dichlorophenoxyacetate: Synthesis and herbicide release. Journal of Applied Polymer Science, 2006, 102, 4238-4244.	2.6	3
146	Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 2005, 46, 4544-4553.	3.8	38
147	Synthesis and characterization of N-vinylpyrrolidone-tert-butyl methacrylate-methacrylic acid terpolymers having amino sugar or bioactive amino side compounds. Journal of Polymer Science Part A, 2005, 43, 18-27.	2.3	16
148	Atom transfer radical polymerization of cyclohexyl methacrylate at a low temperature. Journal of Polymer Science Part A, 2005, 43, 71-77.	2.3	20
149	Influence of aggregate formation in the copolymerization of ethyl α-hydroxymethylacrylate with methyl methacrylate. Journal of Polymer Science Part A, 2005, 43, 4187-4195.	2.3	1
150	Synthesis of triblock copolymers based on two isomer acrylate monomers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 4828-4837.	2.3	15
151	Free-radical copolymerization of styrene with butyl acrylate. II. Elemental kinetic copolymerization step predictions from homopolymerization data. Journal of Polymer Science Part A, 2004, 42, 130-136.	2.3	7
152	Nitroxide-mediated free-radical copolymerization of styrene with butyl acrylate. Journal of Polymer Science Part A, 2004, 42, 4168-4176.	2.3	30
153	Atom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional Monomer. Macromolecular Chemistry and Physics, 2004, 205, 2221-2228.	2.2	107
154	Nanostructured Oxides in Chemistry:  Characterization and Properties. Chemical Reviews, 2004, 104, 4063-4104.	47.7	909
155	Physical Properties of PBMA-b-PBA-b-PBMA Triblock Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2003, 204, 2007-2016.	2.2	9
156	Relation of swelling and Tg depression to the apparent free volume of a particle-filled, epoxy-based adhesive. Journal of Applied Polymer Science, 2003, 87, 1436-1444.	2.6	47
157	Viscoelastic behavior in a hydroxyl-terminated polybutadiene gum and its highly filled composites: Effect of the type of filler on the relaxation processes. Journal of Applied Polymer Science, 2003, 88, 1705-1712.	2.6	30
158	Monomer reactivity ratios and glass-transition temperatures of copolymers based on dimethyl amino ethyl methacrylate and two structural hydroxy-functional acrylate isomers. Journal of Polymer Science Part A, 2003, 41, 2659-2666.	2.3	14
159	Synthesis, Characterization, and Thermal Properties of Block Copolymers Containing Poly(styrene-co-4-vinylpyridine) and Poly(styrene-co-butyl acrylate) by Controlled Radical Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 2665-2673.	2.2	7
160	Effect of hygrothermal aging history on sorption process, swelling, and glass transition temperature in a particle-filled epoxy-based adhesive. Journal of Applied Polymer Science, 2002, 84, 1581-1591.	2.6	59
161	Synthesis and characterization of PMMA-b-PBMA block copolymers by atom transfer radical polymerization. Journal of Applied Polymer Science, 2002, 84, 2683-2691.	2.6	10
162	Preparation of poly(tert -butyl acrylate- g -styrene) as precursors of amphiphilic graft copolymers. 1. Kinetic study and thermal properties. Polymer, 2002, 43, 3173-3179.	3.8	27

#	Article	IF	Citations
163	Preparation of poly(tert-butyl acrylate-g-styrene) as precursors of amphiphilic graft copolymers: 2. Relaxation processes and mechanical behavior. Polymer, 2002, 43, 2803-2810.	3.8	15
164	Viscoelastic and mechanical properties of poly(butyl acrylate-g-styrene) copolymers. Polymer, 2001, 42, 4647-4655.	3.8	37
165	The importance of solvent polar character on the synthesis of PMMA-b-PBA block copolymers by atom transfer radical polymerization. Polymer, 2001, 42, 9405-9412.	3.8	37
166	End-capped AB3-type hyperbranched carbosilane macromolecules. Journal of Polymer Science Part A, 2001, 39, 3287-3293.	2.3	10
167	Synthesis of poly(methyl methacrylate) in a pyridine solution by atom transfer radical polymerization. Journal of Polymer Science Part A, 2001, 39, 3443-3450.	2.3	9
168	Thermal behavior of poly(dimethyl itaconate) and poly(di-n-butyl itaconate) copolymerized with methyl methacrylate. Polymer Engineering and Science, 2001, 41, 1616-1625.	3.1	11
169	Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. Journal of Applied Polymer Science, 2001, 80, 783-789.	2.6	15
170	Synthesis, characterization, and glass transition temperature of poly(styrene-b-butyl methacrylate) block copolymers by stable free radical polymerization. Journal of Applied Polymer Science, 2001, 82, 14-21.	2.6	7
171	An Analysis of the Solvent Effects on the Monomer Reactivity Ratios Using the Copolymer Glass Transition Temperatures. Macromolecular Rapid Communications, 2001, 22, 451-455.	3.9	12
172	Glass Transition Temperatures of Poly[(methyl methacrylate)-co-(butyl acrylate)]s Synthesized by Atom-Transfer Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1046-1052.	3.9	15
173	A Comparative Study of Methyl Methacrylate/Butyl Acrylate Copolymerization Kinetics by Atom-Transfer and Conventional Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1415-1421.	3.9	14
174	Atom-Transfer Radical Polymerization of Dimethyl Itaconate. Macromolecular Chemistry and Physics, 2001, 202, 1213-1218.	2.2	23
175	Solvent Effects on the Synthesis of Poly(methyl methacrylate) by Atom-Transfer Radical Polymerization (ATRP). Macromolecular Chemistry and Physics, 2001, 202, 2565-2571.	2.2	39
176	Sequence Distribution and Stereoregularity of Methyl Methacrylate and Butyl Acrylate Statistical Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 5833-5837.	4.8	41
177	A Comparative Study of Methyl Methacrylate/Butyl Acrylate Copolymerization Kinetics by Atom-Transfer and Conventional Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1415.	3.9	1
178	An Analysis of the Solvent Effects on the Monomer Reactivity Ratios Using the Copolymer Glass Transition Temperatures. Macromolecular Rapid Communications, 2001, 22, 451-455.	3.9	0
179	Glass transition temperature of methyl methacrylate-ethyl ?-benzoyloxymethylacrylate copolymers. Polymer International, 2000, 49, 377-381.	3.1	6
180	Solvent effects on the free-radical copolymerization of styrene with butyl acrylate. I. Monomer reactivity ratios. Journal of Polymer Science Part A, 2000, 38, 60-67.	2.3	24

#	Article	IF	CITATIONS
181	A kinetic study of butyl acrylate free radical polymerization in benzene solution. Macromolecular Chemistry and Physics, 2000, 201, 1840-1845.	2.2	24
182	Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: determination of monomer reactivity ratios and glass transition temperatures. Polymer, 2000, 41, 8001-8008.	3.8	58
183	Glass transition temperature and thermal degradation of N-2-acryloyloxyethyl phthalimide copolymers. Polymer Bulletin, 2000, 45, 397-404.	3.3	11
184	Glass transition temperatures of butyl acrylate-methyl methacrylate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2512-2520.	2.1	38
185	A kinetic study of free radical copolymerization of styrene/butyl acrylate. Macromolecular Chemistry and Physics, 1999, 200, 199-205.	2.2	14
186	A kinetic study of free radical copolymerization of styrene/butyl acrylate. Macromolecular Chemistry and Physics, 1999, 200, 199-205.	2.2	1
187	Solvent effects on the free-radical polymerization of methyl methacrylate. Polymer, 1998, 39, 991-995.	3.8	27
188	Glass transitions in dimethyl and di-n-butyl poly(itaconate ester)s and their copolymers with methyl methacrylate. Polymer, 1997, 38, 1367-1371.	3.8	22
189	Determination of the transfer constant of \hat{l} ±-thioglycerol in methyl methacrylate free-radical polymerization. Macromolecular Chemistry and Physics, 1997, 198, 3883-3892.	2.2	5
190	Kinetic study of high-conversion copolymerization of butyl acrylate with methyl methacrylate in solution. Journal of Polymer Science Part A, 1997, 35, 1961-1965.	2.3	12
191	Kinetic study of highâ€conversion copolymerization of butyl acrylate with methyl methacrylate in solution. Journal of Polymer Science Part A, 1997, 35, 1961-1965.	2.3	0
192	Kinetic study of free-radical copolymerization of methyl acrylate and methyl methacrylate in benzene. Macromolecular Chemistry and Physics, 1996, 197, 1185-1191.	2.2	7
193	A kinetic study of free-radical copolymerization of butyl acrylate with methyl methacrylate in solution. Macromolecular Chemistry and Physics, 1996, 197, 3743-3755.	2.2	48
194	A kinetic study on the radical copolymerization of dimethyl itaconate and methyl methacrylate in benzene. Polymer, 1996, 37, 263-268.	3.8	16
195	Kinetic study of free-radical copolymerization of ethyl \hat{l}_{\pm} -benzoyloxymethylacrylate with methyl methacrylate in benzene. Macromolecular Rapid Communications, 1995, 16, 503-512.	3.9	4
196	High conversion copolymerization of DI-n-butyl itaconate with methyl methacrylate in benzene solution. European Polymer Journal, 1995, 31, 1103-1107.	5.4	10
197	Free-radical homopolymerization and copolymerization of di-n-butyl itaconate. Polymer, 1994, 35, 4437-4442.	3.8	20
198	Effect of copolymer composition and conversion on the glass transition of methyl acrylate–methyl methacrylate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1191-1203.	2.1	24

#	ARTICLE	IF	CITATIONS
199	Thermal properties of ethyl α-hydroxymethylacrylate-methyl methacrylate copolymers. Polymer, 1994, 35, 4474-4478.	3.8	5
200	Sequence distribution and stereoregularity in methyl methacrylate-methyl acrylate copolymers at high conversions. Polymer, 1993, 34, 3123-3128.	3.8	23
201	Free-radical copolymerization of methyl acrylate with methyl methacrylate in benzene solution. Polymer, 1993, 34, 1786-1789.	3.8	13
202	Amylose Modified Starches as Superabsorbent Systems for Release of Potassium Fertilizers. Journal of Polymers and the Environment, 0 , 1 .	5.0	1