
Marta FernÃ;ndez-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167783/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymeric materials with antimicrobial activity. Progress in Polymer Science, 2012, 37, 281-339.	24.7	1,055
2	Nanostructured Oxides in Chemistry:  Characterization and Properties. Chemical Reviews, 2004, 104, 4063-4104.	47.7	909
3	Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science, 2014, 39, 510-554.	24.7	222
4	The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal, 2015, 65, 46-62.	5.4	136
5	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	2.9	123
6	High-Performance Dual-Action Polymerâ^'TiO ₂ Nanocomposite Films via Melting Processing. Nano Letters, 2007, 7, 2529-2534.	9.1	121
7	Antimicrobial Polymers in the Nano-World. Nanomaterials, 2017, 7, 48.	4.1	121
8	Selfâ€Sterilized EVOHâ€TiO ₂ Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 2008, 18, 1949-1960.	14.9	111
9	Atom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional Monomer. Macromolecular Chemistry and Physics, 2004, 205, 2221-2228.	2.2	107
10	Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation. Applied Catalysis B: Environmental, 2008, 84, 87-93.	20.2	102
11	Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydrate Polymers, 2018, 194, 375-383.	10.2	86
12	Boosting TiO2-anatase antimicrobial activity: Polymer-oxide thin films. Applied Catalysis B: Environmental, 2009, 89, 441-447.	20.2	81
13	Poly(ionic liquid)s as antimicrobial materials. European Polymer Journal, 2018, 105, 135-149.	5.4	78
14	Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized DMAEMA. Biomacromolecules, 2015, 16, 295-303.	5.4	74
15	Recovery of yerba mate (llex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 2018, 111, 317-328.	5.2	73
16	Antimicrobial polymethacrylates based on quaternized 1,3-thiazole and 1,2,3-triazole side-chain groups. Polymer Chemistry, 2015, 6, 3449-3459.	3.9	69
17	Magnetite–Polypeptide Hybrid Materials Decorated with Gold Nanoparticles: Study of Their Catalytic Activity in 4-Nitrophenol Reduction. Journal of Physical Chemistry C, 2012, 116, 24717-24725.	3.1	67
18	Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties. Journal of Physical Chemistry C, 2009, 113, 9182-9190.	3.1	66

#	Article	IF	CITATIONS
19	Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 2013, 14, 9249-9266.	4.1	60
20	Effect of hygrothermal aging history on sorption process, swelling, and glass transition temperature in a particle-filled epoxy-based adhesive. Journal of Applied Polymer Science, 2002, 84, 1581-1591.	2.6	59
21	Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: determination of monomer reactivity ratios and glass transition temperatures. Polymer, 2000, 41, 8001-8008.	3.8	58
22	Fabrication of Honeycomb-Structured Porous Surfaces Decorated with Glycopolymers. Langmuir, 2010, 26, 8552-8558.	3.5	52
23	Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter, 2007, 3, 725-731.	2.7	51
24	High Efficiency Antimicrobial Thiazolium and Triazolium Side-Chain Polymethacrylates Obtained by Controlled Alkylation of the Corresponding Azole Derivatives. Biomacromolecules, 2015, 16, 1844-1854.	5.4	51
25	Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polymer Chemistry, 2013, 4, 558-567.	3.9	50
26	A kinetic study of free-radical copolymerization of butyl acrylate with methyl methacrylate in solution. Macromolecular Chemistry and Physics, 1996, 197, 3743-3755.	2.2	48
27	Relation of swelling andTg depression to the apparent free volume of a particle-filled, epoxy-based adhesive. Journal of Applied Polymer Science, 2003, 87, 1436-1444.	2.6	47
28	Synthesis and characterization of glycidyl methacrylate/butyl acrylate copolymers obtained at a low temperature by atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1807-1816.	2.3	46
29	Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir, 2012, 28, 9778-9787.	3.5	44
30	Rheological cure characterization of a polyfunctional epoxy acrylic resin. Reactive and Functional Polymers, 2010, 70, 761-766.	4.1	42
31	Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental, 2011, 104, 346-352.	20.2	42
32	Sequence Distribution and Stereoregularity of Methyl Methacrylate and Butyl Acrylate Statistical Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 5833-5837.	4.8	41
33	Removal of heavy metal ions in water by starch esters. Starch/Staerke, 2016, 68, 37-46.	2.1	40
34	Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials, 2020, 10, 22.	4.1	40
35	Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnology Advances, 2020, 43, 107586.	11.7	40
36	Solvent Effects on the Synthesis of Poly(methyl methacrylate) by Atom-Transfer Radical Polymerization (ATRP). Macromolecular Chemistry and Physics, 2001, 202, 2565-2571.	2.2	39

#	Article	IF	CITATIONS
37	Glass transition temperatures of butyl acrylate-methyl methacrylate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2512-2520.	2.1	38
38	Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 2005, 46, 4544-4553.	3.8	38
39	Wellâ€controlled amphiphilic block glycopolymers and their molecular recognition with lectins. Journal of Polymer Science Part A, 2010, 48, 3623-3631.	2.3	38
40	Viscoelastic and mechanical properties of poly(butyl acrylate-g-styrene) copolymers. Polymer, 2001, 42, 4647-4655.	3.8	37
41	The importance of solvent polar character on the synthesis of PMMA-b-PBA block copolymers by atom transfer radical polymerization. Polymer, 2001, 42, 9405-9412.	3.8	37
42	Fabrication of Structured Porous Films by Breath Figures and Phase Separation Processes: Tuning the Chemistry and Morphology Inside the Pores Using Click Chemistry. ACS Applied Materials & Interfaces, 2013, 5, 3943-3951.	8.0	37
43	Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics. Journal of Polymers and the Environment, 2016, 24, 343-355.	5.0	36
44	Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene–vinyl alcohol copolymers. Polymer, 2008, 49, 2801-2807.	3.8	35
45	Block Copolymer Surfactants in Emulsion Polymerization: Influence of the Miscibility of the Hydrophobic Block on Kinetics, Particle Morphology, and Film Formation. Macromolecules, 2011, 44, 4282-4290.	4.8	35
46	Hydrogels based on oxidized starches from different botanical sources for release of fertilizers. International Journal of Biological Macromolecules, 2019, 136, 813-822.	7.5	33
47	Direct preparation of PNIPAM coating gold nanoparticles by catechol redox and surface adhesion chemistry. RSC Advances, 2014, 4, 11740-11749.	3.6	31
48	Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. Nanomaterials, 2019, 9, 1548.	4.1	31
49	Viscoelastic behavior in a hydroxyl-terminated polybutadiene gum and its highly filled composites: Effect of the type of filler on the relaxation processes. Journal of Applied Polymer Science, 2003, 88, 1705-1712.	2.6	30
50	Nitroxide-mediated free-radical copolymerization of styrene with butyl acrylate. Journal of Polymer Science Part A, 2004, 42, 4168-4176.	2.3	30
51	Control of the chemistry outside the pores in honeycomb patterned films. Polymer Chemistry, 2013, 4, 4024.	3.9	30
52	Recognition Abilities and Development of Heat-Induced Entangled Networks in Lactone-Derived Glycopolymers Obtained from Ethylene-vinyl Alcohol Copolymers. Biomacromolecules, 2009, 10, 1828-1837.	5.4	29
53	Preparation of glycopolymerâ€coated magnetite nanoparticles for hyperthermia treatment. Journal of Polymer Science Part A, 2012, 50, 5087-5096.	2.3	29
54	Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromolecular Bioscience, 2021, 21, e2100156.	4.1	29

#	Article	IF	CITATIONS
55	Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A, 2012, 50, 851-859.	2.3	28
56	Controlled block glycopolymers able to bind specific proteins. Journal of Polymer Science Part A, 2013, 51, 1337-1347.	2.3	28
57	Solvent effects on the free-radical polymerization of methyl methacrylate. Polymer, 1998, 39, 991-995.	3.8	27
58	Preparation of poly(tert -butyl acrylate- g -styrene) as precursors of amphiphilic graft copolymers. 1. Kinetic study and thermal properties. Polymer, 2002, 43, 3173-3179.	3.8	27
59	Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. LWT - Food Science and Technology, 2015, 60, 802-810.	5.2	27
60	New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron, 2020, 187, 114640.	2.2	27
61	Glycopolymers resulting from ethylene–vinyl alcohol copolymers: Synthetic approach, characterization, and interactions with lectins. Journal of Polymer Science Part A, 2008, 46, 7238-7248.	2.3	26
62	Heavy metal (Cd ²⁺ , Ni ²⁺ , Pb ²⁺ and Ni ²⁺) adsorption in aqueous solutions by oxidized starches. Polymers for Advanced Technologies, 2015, 26, 147-152.	3.2	26
63	Photo-crosslinkable polyurethanes reinforced with coumarin modified silica nanoparticles for photo-responsive coatings. Progress in Organic Coatings, 2018, 123, 63-74.	3.9	26
64	Glycoparticles and bioactive films prepared by emulsion polymerization using a well-defined block glycopolymer stabilizer. Soft Matter, 2011, 7, 2493.	2.7	25
65	Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 2020, 13, 4910.	2.9	25
66	Effect of copolymer composition and conversion on the glass transition of methyl acrylate–methyl methacrylate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1191-1203.	2.1	24
67	Solvent effects on the free-radical copolymerization of styrene with butyl acrylate. I. Monomer reactivity ratios. Journal of Polymer Science Part A, 2000, 38, 60-67.	2.3	24
68	A kinetic study of butyl acrylate free radical polymerization in benzene solution. Macromolecular Chemistry and Physics, 2000, 201, 1840-1845.	2.2	24
69	Synthesis and lectin recognition studies of glycosylated polystyrene microspheres functionalized via thiol–para-fluorine "click―reaction. Polymer Chemistry, 2012, 3, 3282.	3.9	24
70	Glycopolymeric Materials for Advanced Applications. Materials, 2015, 8, 2276-2296.	2.9	24
71	Accelerated disintegration of compostable Ecovio polymer by using ZnO particles as filler. Polymer Degradation and Stability, 2021, 185, 109501.	5.8	24
72	Sequence distribution and stereoregularity in methyl methacrylate-methyl acrylate copolymers at high conversions. Polymer, 1993, 34, 3123-3128.	3.8	23

#	Article	IF	CITATIONS
73	Atom-Transfer Radical Polymerization of Dimethyl Itaconate. Macromolecular Chemistry and Physics, 2001, 202, 1213-1218.	2.2	23
74	Biocidal Capability Optimization in Organicâ^'Inorganic Nanocomposites Based on Titania. Environmental Science & Technology, 2009, 43, 1630-1634.	10.0	23
75	Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials. ACS Applied Bio Materials, 2019, 2, 4714-4719.	4.6	23
76	Glass transitions in dimethyl and di-n-butyl poly(itaconate ester)s and their copolymers with methyl methacrylate. Polymer, 1997, 38, 1367-1371.	3.8	22
77	Curing kinetic study using a well-controlled multifunctional copolymer based on glycidyl methacrylate. European Polymer Journal, 2009, 45, 2665-2673.	5.4	22
78	Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems. Acta Biomaterialia, 2015, 25, 86-96.	8.3	22
79	Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery. Journal of Polymers and the Environment, 2018, 26, 728-739.	5.0	22
80	Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. Coatings, 2022, 12, 144.	2.6	21
81	Free-radical homopolymerization and copolymerization of di-n-butyl itaconate. Polymer, 1994, 35, 4437-4442.	3.8	20
82	Atom transfer radical polymerization of cyclohexyl methacrylate at a low temperature. Journal of Polymer Science Part A, 2005, 43, 71-77.	2.3	20
83	Nanostructuration by Self-Assembly in <i>N</i> -Alkyl Thiazolium and Triazolium Side-Chain Polymethacrylates. Macromolecules, 2015, 48, 7180-7193.	4.8	20
84	Modified Starch as a Filter Controller in Water-Based Drilling Fluids. Materials, 2020, 13, 2794.	2.9	20
85	Incorporation of Poly(Itaconic Acid) with Quaternized Thiazole Groups on Gelatin-Based Films for Antimicrobial-Active Food Packaging. Polymers, 2021, 13, 200.	4.5	20
86	Rheological and structural details of biocidal iPP-TiO2 nanocomposites. European Polymer Journal, 2012, 48, 586-596.	5.4	19
87	Formation of Multigradient Porous Surfaces for Selective Bacterial Entrapment. Biomacromolecules, 2014, 15, 3338-3348.	5.4	19
88	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. European Polymer Journal, 2015, 71, 412-422.	5.4	19
89	Contact Active Antimicrobial Coatings Prepared by Polymer Blending. Macromolecular Bioscience, 2017, 17, 1700258.	4.1	19
90	Tailoring Macromolecular Structure of Cationic Polymers towards Efficient Contact Active Antimicrobial Surfaces. Polymers, 2018, 10, 241.	4.5	19

#	Article	IF	CITATIONS
91	Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers, 2019, 11, 606.	4.5	19
92	Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials. Nanomaterials, 2020, 10, 1218.	4.1	19
93	Biobased polymers derived from itaconic acid bearing clickable groups with potent antibacterial activity and negligible hemolytic activity. Polymer Chemistry, 2021, 12, 3190-3200.	3.9	19
94	Synthesis and characterization of functional gradient copolymers of glycidyl methacrylate and butyl acrylate. Reactive and Functional Polymers, 2008, 68, 1384-1391.	4.1	18
95	Study on UV Excitation Properties of Y2O3:Ln3+ (Ln = Eu3+ or Tb3+) Luminescent Nanomaterials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1443-1448.	0.9	18
96	Amphiphilic block glycopolymers via atom transfer radical polymerization: Synthesis, selfâ€assembly and biomolecular recognition. Journal of Polymer Science Part A, 2011, 49, 2627-2635.	2.3	18
97	Glycopolymers with glucosamine pendant groups: Copolymerization, physico-chemical and interaction properties. Reactive and Functional Polymers, 2011, 71, 1-10.	4.1	18
98	Catecholic Chemistry To Obtain Recyclable and Reusable Hybrid Polymeric Particles as Catalytic Systems. Macromolecules, 2013, 46, 2951-2962.	4.8	18
99	Wellâ€Defined Glycopolymers via RAFT Polymerization: Stabilization of Gold Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 1915-1924.	2.2	18
100	Functional surfaces obtained from emulsion polymerization using antimicrobial glycosylated block copolymers as surfactants. Polymer Chemistry, 2015, 6, 6171-6181.	3.9	18
101	Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers. Colloids and Surfaces B: Biointerfaces, 2016, 140, 94-103.	5.0	17
102	Lower critical solution temperature sensitivity to structural changes in poly(N â€isopropyl acrylamide) homopolymers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1386-1393.	2.1	17
103	Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers, 2020, 12, 972.	4.5	17
104	Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers. Polymers, 2021, 13, 2860.	4.5	17
105	A kinetic study on the radical copolymerization of dimethyl itaconate and methyl methacrylate in benzene. Polymer, 1996, 37, 263-268.	3.8	16
106	Synthesis and characterization ofN-vinylpyrrolidone-tert-butyl methacrylate-methacrylic acid terpolymers having amino sugar or bioactive amino side compounds. Journal of Polymer Science Part A, 2005, 43, 18-27.	2.3	16
107	Small-angle X-ray scattering and linear melt rheologyof poly(tert-butyl acrylate-g-styrene) graft copolymers. Polymer, 2006, 47, 1487-1495.	3.8	16
108	Glycopolymers resultant from ethylene–vinyl alcohol copolymers: Degradation and rheological behavior in bulk. European Polymer Journal, 2008, 44, 2194-2201.	5.4	16

#	Article	IF	CITATIONS
109	Biodegradable and Antimicrobial PLA–OLA Blends Containing Chitosan-Mediated Silver Nanoparticles with Shape Memory Properties for Potential Medical Applications. Nanomaterials, 2020, 10, 1065.	4.1	16
110	Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. Journal of Applied Polymer Science, 2001, 80, 783-789.	2.6	15
111	Glass Transition Temperatures of Poly[(methyl methacrylate)-co-(butyl acrylate)]s Synthesized by Atom-Transfer Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1046-1052.	3.9	15
112	Preparation of poly(tert-butyl acrylate-g-styrene) as precursors of amphiphilic graft copolymers: 2. Relaxation processes and mechanical behavior. Polymer, 2002, 43, 2803-2810.	3.8	15
113	Synthesis of triblock copolymers based on two isomer acrylate monomers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 4828-4837.	2.3	15
114	Free-radical copolymerization of ethyl α-hydroxymethylacrylate with methyl methacrylate by reversible addition–fragmentation chain transfer. Journal of Polymer Science Part A, 2006, 44, 5618-5629.	2.3	15
115	Clycopolymers obtained by chemical modification of wellâ€defined block copolymers. Journal of Polymer Science Part A, 2012, 50, 2565-2577.	2.3	15
116	Surface modification of magnetite hybrid particles with carbohydrates and gold nanoparticlesvia "click―chemistry. Polymer Chemistry, 2013, 4, 986-995.	3.9	15
117	Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. International Journal of Molecular Sciences, 2018, 19, 4120.	4.1	15
118	Antimicrobial Porous Surfaces Prepared by Breath Figures Approach. Materials, 2018, 11, 1266.	2.9	15
119	A kinetic study of free radical copolymerization of styrene/butyl acrylate. Macromolecular Chemistry and Physics, 1999, 200, 199-205.	2.2	14
120	A Comparative Study of Methyl Methacrylate/Butyl Acrylate Copolymerization Kinetics by Atom-Transfer and Conventional Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1415-1421.	3.9	14
121	Monomer reactivity ratios and glass-transition temperatures of copolymers based on dimethyl amino ethyl methacrylate and two structural hydroxy-functional acrylate isomers. Journal of Polymer Science Part A, 2003, 41, 2659-2666.	2.3	14
122	Pressurization of some starches compared to heating: Calorimetric, thermo-optical and X-ray examination. Food Research International, 2008, 41, 683-692.	6.2	14
123	Crosslinking in metallocene ethylene-co-5,7-dimethylocta-1,6-diene copolymers initiated by electron-beam irradiation. Polymer, 2009, 50, 1095-1102.	3.8	14
124	Free-radical copolymerization of methyl acrylate with methyl methacrylate in benzene solution. Polymer, 1993, 34, 1786-1789.	3.8	13
125	Tuning the Pore Composition by Two Simultaneous Interfacial Self-Assembly Processes: Breath Figures and Coffee Stain. Langmuir, 2014, 30, 6134-6141.	3.5	13
126	Silica-nanocomposites of photo-crosslinkable poly(urethane)s based on poly(ε-caprolactone) and coumarin. European Polymer Journal, 2017, 93, 21-32.	5.4	13

#	Article	IF	CITATIONS
127	Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polymer Testing, 2022, 109, 107541.	4.8	13
128	Kinetic study of high-conversion copolymerization of butyl acrylate with methyl methacrylate in solution. Journal of Polymer Science Part A, 1997, 35, 1961-1965.	2.3	12
129	An Analysis of the Solvent Effects on the Monomer Reactivity Ratios Using the Copolymer Glass Transition Temperatures. Macromolecular Rapid Communications, 2001, 22, 451-455.	3.9	12
130	Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites. European Polymer Journal, 2010, 46, 397-403.	5.4	12
131	Gluconolactoneâ€derivated polymers: Copolymerization, thermal properties, and their potential use as polymeric surfactants. Journal of Polymer Science Part A, 2011, 49, 526-536.	2.3	12
132	Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization. Journal of Colloid and Interface Science, 2014, 417, 336-345.	9.4	12
133	Influence of Poly(εâ€caprolactone) Molecular Weight and Coumarin Amount on Photoâ€Responsive Polyurethane Properties. Macromolecular Materials and Engineering, 2017, 302, 1600515.	3.6	12
134	Effect of Camphorquinone Concentration in Physical-Mechanical Properties of Experimental Flowable Resin Composites. BioMed Research International, 2018, 2018, 1-10.	1.9	12
135	Adhesive antibacterial coatings based on copolymers bearing thiazolium cationic groups and catechol moieties as robust anchors. Progress in Organic Coatings, 2019, 136, 105272.	3.9	12
136	Influence of side chain structure on the thermal and antimicrobial properties of cationic methacrylic polymers. European Polymer Journal, 2019, 117, 86-93.	5.4	12
137	Glass transition temperature and thermal degradation of N-2-acryloyloxyethyl phthalimide copolymers. Polymer Bulletin, 2000, 45, 397-404.	3.3	11
138	Thermal behavior of poly(dimethyl itaconate) and poly(di-n-butyl itaconate) copolymerized with methyl methacrylate. Polymer Engineering and Science, 2001, 41, 1616-1625.	3.1	11
139	Synthesis and characterization of novel glycopolymers based on ethyl α-hydroxymethylacrylate. Carbohydrate Polymers, 2007, 68, 89-94.	10.2	11
140	Chemical modification of block copolymers based on 2-hydroxyethyl acrylate to obtain amphiphilic glycopolymers. European Polymer Journal, 2015, 62, 167-178.	5.4	11
141	Reversible crosslinked low density polyethylenes: structure and thermal properties. Journal of Polymer Research, 2016, 23, 1.	2.4	11
142	The thermal and thermomechanical behaviors of Spartium junceum flour reinforced polypropylene composites: effects of treatment and flour content. Composite Interfaces, 2018, 25, 1067-1089.	2.3	11
143	High conversion copolymerization of DI-n-butyl itaconate with methyl methacrylate in benzene solution. European Polymer Journal, 1995, 31, 1103-1107.	5.4	10
144	End-capped AB3-type hyperbranched carbosilane macromolecules. Journal of Polymer Science Part A, 2001, 39, 3287-3293.	2.3	10

#	Article	IF	CITATIONS
145	Synthesis and characterization of PMMA-b-PBMA block copolymers by atom transfer radical polymerization. Journal of Applied Polymer Science, 2002, 84, 2683-2691.	2.6	10
146	Specific lectin interactions and temperatureâ€induced reversible gels in novel waterâ€soluble glycopolymers bearing maltotrionolactone pendant groups. Journal of Polymer Science Part A, 2010, 48, 719-729.	2.3	10
147	Influence of glycopolymers structure on the copolymerization reaction and on their binding behavior with lectins. European Polymer Journal, 2012, 48, 963-973.	5.4	10
148	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	3.6	10
149	Amphiphilic polymers bearing gluconolactone moieties: Synthesis and long side-chain crystalline behavior. Carbohydrate Polymers, 2013, 94, 755-764.	10.2	10
150	Chemical Hydrogels Bearing Thiazolium Groups with a Broad Spectrum of Antimicrobial Behavior. Polymers, 2020, 12, 2853.	4.5	10
151	Functional properties of photo-crosslinkable biodegradable polyurethane nanocomposites. Polymer Degradation and Stability, 2020, 178, 109204.	5.8	10
152	Succinylated Starches for Dye Removal. Starch/Staerke, 2021, 73, .	2.1	10
153	Synthesis of poly(methyl methacrylate) in a pyridine solution by atom transfer radical polymerization. Journal of Polymer Science Part A, 2001, 39, 3443-3450.	2.3	9
154	Physical Properties of PBMA-b-PBA-b-PBMA Triblock Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2003, 204, 2007-2016.	2.2	9
155	Ethylene-vinyl alcohol copolymers partially modified with benzoate groups: Study of their polymorphic behavior. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1026-1036.	2.1	9
156	Synthesis of poly(di[methylamine]ethyl methacrylate)â€ <i>b</i> à€poly(cyclohexyl) Tj ETQq0 0 0 rgBT /Overlock 2 ATRP: Condensedâ€phase and solution properties. Journal of Polymer Science Part A, 2008, 46, 85-92.	10 Tf 50 30 2.3	07 Td (meth 9
157	Molecular recognition capability and rheological behavior in solution of novel lactone-based glycopolymers. European Polymer Journal, 2009, 45, 3176-3186.	5.4	9
158	Statistical Glycopolymers Based on 2â€Hydroxyethyl Methacrylate: Copolymerization, Thermal Properties, and Lectin Interaction Studies. Macromolecular Chemistry and Physics, 2011, 212, 1294-1304.	2.2	9
159	Preparation and Molecular Characterization of Chitosans Obtained from Shrimp (<i>Litopenaeus) Tj ETQq1 1 0.78</i>	34314 rgB 3.1	T_Overlock
160	Antimicrobial surfaces obtained from blends of block copolymers synthesized by simultaneous ATRP and click chemistry reactions. European Polymer Journal, 2017, 93, 53-62.	5.4	9
161	Selfâ€Assembly of ATRPâ€Synthesized PCHâ€ <i>b</i> â€P <i>t</i> BAâ€ <i>b</i> â€PCH Triblock Copolymers Obse Timeâ€Resolved SAXS. Macromolecular Chemistry and Physics, 2007, 208, 2654-2664.	rved by	8
162	CHAPTER 1. Introduction to Antimicrobial Polymeric Materials. RSC Polymer Chemistry Series, 2013, , 1-21.	0.2	8

#	Article	IF	CITATIONS
163	New quaternized poly(4-vinylpyridine-co-divinylbenzene) material containing nickel(II) Schiff base complex: synthesis, thermogravimetry, and application for heterogeneous electrooxidation of ethanol. Research on Chemical Intermediates, 2018, 44, 6831-6846.	2.7	8
164	Porous Microstructured Surfaces with pHâ€Triggered Antibacterial Properties. Macromolecular Bioscience, 2019, 19, e1900127.	4.1	8
165	Development of photoresponsive coumarin-modified ethylene-co-vinyl alcohol copolymers with antifouling behavior. Reactive and Functional Polymers, 2020, 157, 104750.	4.1	8
166	Kinetic study of free-radical copolymerization of methyl acrylate and methyl methacrylate in benzene. Macromolecular Chemistry and Physics, 1996, 197, 1185-1191.	2.2	7
167	Synthesis, characterization, and glass transition temperature of poly(styrene-b-butyl methacrylate) block copolymers by stable free radical polymerization. Journal of Applied Polymer Science, 2001, 82, 14-21.	2.6	7
168	Synthesis, Characterization, and Thermal Properties of Block Copolymers Containing Poly(styrene-co-4-vinylpyridine) and Poly(styrene-co-butyl acrylate) by Controlled Radical Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 2665-2673.	2.2	7
169	Free-radical copolymerization of styrene with butyl acrylate. II. Elemental kinetic copolymerization step predictions from homopolymerization data. Journal of Polymer Science Part A, 2004, 42, 130-136.	2.3	7
170	Environmentally Friendly Fertilizers Based on Starch Superabsorbents. Materials, 2019, 12, 3493.	2.9	7
171	Glass transition temperature of methyl methacrylate-ethyl ?-benzoyloxymethylacrylate copolymers. Polymer International, 2000, 49, 377-381.	3.1	6
172	Aggregation and solubilization of organic solvents and petrol/gasoline in water mediated by block copolymers. European Polymer Journal, 2007, 43, 4583-4592.	5.4	6
173	Thermal properties of ethyl α-hydroxymethylacrylate-methyl methacrylate copolymers. Polymer, 1994, 35, 4474-4478.	3.8	5
174	Determination of the transfer constant of $\hat{I}\pm$ -thioglycerol in methyl methacrylate free-radical polymerization. Macromolecular Chemistry and Physics, 1997, 198, 3883-3892.	2.2	5
175	Influence of spacer group on the structure and thermal properties of copolymers based on acrylonitrile and methacrylic 1,3-thiazole and 1,2,3-triazole derivatives. European Polymer Journal, 2015, 71, 401-411.	5.4	5
176	Fatâ€Replacer Properties of Oxidized Cassava Starch Using Hydrogen Peroxide/Sodium Bicarbonate Redox System in Mayonnaise Formulation and Its Stability. Starch/Staerke, 2019, 71, 1900112.	2.1	5
177	Kinetic study of free-radical copolymerization of ethyl α-benzoyloxymethylacrylate with methyl methacrylate in benzene. Macromolecular Rapid Communications, 1995, 16, 503-512.	3.9	4
178	Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 2008, 128, 851-854.	3.1	4
179	Rheological behavior of aminosaccharide-based glycopolymers obtained from ethylene-vinyl alcohol copolymers. Polymer Journal, 2011, 43, 205-213.	2.7	4
180	Polymeric Materials: Surfaces, Interfaces and Bioapplications. Materials, 2019, 12, 1312.	2.9	4

#	Article	IF	CITATIONS
181	Antibacterial Polymers Based on Poly(2-hydroxyethyl methacrylate) and Thiazolium Groups with Hydrolytically Labile Linkages Leading to Inactive and Low Cytotoxic Compounds. Materials, 2021, 14, 7477.	2.9	4
182	Copolymers of acrylic acid with 2-acryloyloxyethyl 2,4-dichlorophenoxyacetate: Synthesis and herbicide release. Journal of Applied Polymer Science, 2006, 102, 4238-4244.	2.6	3
183	Physical properties of poly(cyclohexyl methacrylate)-b-poly(iso-butyl acrylate)-b-poly(cyclohexyl) Tj ETQq1 1 0.784 48, 5581-5589.	1314 rgBT 3.8	/Overlock 10 3
184	Metallocene ethyleneâ€ <i>co</i> â€(5,7â€dimethyloctaâ€1, 6â€diene) copolymers crosslinked using electron bea irradiation: a tunable alternative. Polymer International, 2011, 60, 1309-1317.	m 3.1	3
185	Master curve and time–temperature–transformation cure diagram of a polyfunctional epoxy acrylic resin. Journal of Applied Polymer Science, 2011, 120, 2166-2172.	2.6	3
186	Titanium Dioxideâ \in "Polymer Nanocomposites with Advanced Properties. , 2012, , 119-149.		3
187	Interfacial agent effect on rheological response and crystallite characteristics in germicidal polypropylene/titanium dioxide nanocomposites. Polymer International, 2012, 61, 1655-1665.	3.1	3
188	Influence of Polymer Composition and Substrate on the Performance of Bioinspired Coatings with Antibacterial Activity. Coatings, 2019, 9, 733.	2.6	3
189	Preparation of epoxidized sunflower oil metal soap derivatives and their use asheat stabilizers for polyvinyl chloride. Turkish Journal of Chemistry, 2019, 43, 582-593.	1.2	3
190	Tailoring size and release kinetics of <i>κ/ι</i> -hybrid carrageenan microgels via a surfactant-assisted technique. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 338-344.	3.4	3
191	Thermal and Morphological Behaviour of Wellâ€Defined Amphiphilic Triblock Copolymers Based on Cyclohexyl and Di(ethylene glycol) Methyl Ether Methacrylates. Macromolecular Chemistry and Physics, 2008, 209, 184-194.	2.2	2
192	Revisiting the role of calcite in <i>Spondylus crassisquama</i> shell. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 151-160.	0.9	2
193	Effect of chemical treatment on thermophysical behavior of Spanish broom flour-reinforced polypropylene biocomposite. Journal of Polymer Engineering, 2021, 41, 9-18.	1.4	2
194	Influence of aggregate formation in the copolymerization of ethyl α-hydroxymethylacrylate with methyl methacrylate. Journal of Polymer Science Part A, 2005, 43, 4187-4195.	2.3	1
195	Honeycomb structured porous interfaces as templates for protein adhesion. Journal of Physics: Conference Series, 2010, 252, 012002.	0.4	1
196	A kinetic study of free radical copolymerization of styrene/butyl acrylate. Macromolecular Chemistry and Physics, 1999, 200, 199-205.	2.2	1
197	A Comparative Study of Methyl Methacrylate/Butyl Acrylate Copolymerization Kinetics by Atom-Transfer and Conventional Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 1415.	3.9	1
198	Amylose Modified Starches as Superabsorbent Systems for Release of Potassium Fertilizers. Journal of Polymers and the Environment, 0, , 1.	5.0	1

#	Article	IF	CITATIONS
199	Thermomechanical properties of silica-polyacrylic nanocomposites. MRS Advances, 2017, 2, 2745-2750.	0.9	0
200	Redox initiation in semicontinuous polymerization to search for specific mechanical properties of copolymers. E-Polymers, 2020, 20, 613-623.	3.0	0
201	Kinetic study of high onversion copolymerization of butyl acrylate with methyl methacrylate in solution. Journal of Polymer Science Part A, 1997, 35, 1961-1965.	2.3	Ο
202	An Analysis of the Solvent Effects on the Monomer Reactivity Ratios Using the Copolymer Glass Transition Temperatures. Macromolecular Rapid Communications, 2001, 22, 451-455.	3.9	0