
Ya-Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167628/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Research, 2016, 188, 10-16.	5.1	70
2	Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 2016, 194, 23-34.	3.5	65
3	Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Research, 2015, 184, 39-49.	5.1	57
4	Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235, 325-336.	3.2	53
5	Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. Journal of Plant Physiology, 2016, 194, 61-71.	3.5	53
6	Two distinct strategies of cotton and soybean differing in leaf movement to perform photosynthesis under drought in the field. Functional Plant Biology, 2011, 38, 567.	2.1	50
7	Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages. Functional Plant Biology, 2014, 41, 737.	2.1	44
8	Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 2017, 203, 192-200.	5.1	35
9	Droughtâ€introduced variability of mesophyll conductance in <i>Gossypium</i> and its relationship with leaf anatomy. Physiologia Plantarum, 2019, 166, 873-887.	5.2	30
10	EFFECTS OF WATER STORAGE IN DEEPER SOIL LAYERS ON GROWTH, YIELD, AND WATER PRODUCTIVITY OF COTTON (<i>GOSSYPIUM HIRSUTUM</i> L.) IN ARID AREAS OF NORTHWESTERN CHINA. Irrigation and Drainage, 2014, 63, 59-70.	1.7	25
11	Water Deficit Alters Cotton Canopy Structure and Increases Photosynthesis in the Mid anopy Layer. Agronomy Journal, 2015, 107, 1947-1957.	1.8	24
12	Mesophyll conductance in cotton bracts: anatomically determined internal CO2 diffusion constraints on photosynthesis. Journal of Experimental Botany, 2018, 69, 5433-5443.	4.8	24
13	Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit. Journal of Plant Physiology, 2018, 220, 74-82.	3.5	21
14	Different strategies of acclimation of photosynthesis, electron transport and antioxidative activity in leaves of two cotton species to water deficit. Functional Plant Biology, 2016, 43, 448.	2.1	19
15	Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynthesis Research, 2021, 150, 239-250.	2.9	19
16	Leaf Wilting Movement Can Protect Water-Stressed Cotton (Gossypium hirsutum L.) Plants Against Photoinhibition of Photosynthesis and Maintain Carbon Assimilation in the Field. Journal of Plant Biology, 2010, 53, 52-60.	2.1	17
17	Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. Journal of Experimental Botany, 2022, 73, 873-885.	4.8	15
18	Effects of cotton field management practices on soil CO2 emission and C balance in an arid region of Northwest China, Journal of Arid Land, 2014, 6, 468-477	2.3	13

Ya-Li Zhang

#	Article	IF	CITATIONS
19	Photosynthetic Activity and Its Correlation with Matter Production in Non-foliar Green Organs of Cotton. Acta Agronomica Sinica(China), 2010, 36, 701-708.	0.3	11
20	The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions. Tree Physiology, 2022, 42, 848-861.	3.1	10
21	The energy cost of repairing photoinactivated photosystem II: an experimental determination in cotton leaf discs. New Phytologist, 2022, 235, 446-456.	7.3	10
22	Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber. Journal of Integrative Agriculture, 2013, 12, 979-988.	3.5	9
23	Improve Plant Photosynthesis by a New Slow-Release Carbon Dioxide Gas Fertilizer. ACS Omega, 2019, 4, 10354-10361.	3.5	9
24	Growing degree days is the dominant factor associated with cellulose deposition in cotton fiber. Cellulose, 2014, 21, 813-822.	4.9	7
25	Leaf physiological traits of plants from the Qinghai-Tibet Plateau and other arid sites in China: Identifying susceptible species and well-adapted extremophiles. Journal of Plant Physiology, 2022, 272, 153689.	3.5	7
26	Contributions of Nonleaf Organs to the Yield of Cotton Grown with Different Water Supply. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	6
27	Boll-leaf system gas exchange and its application in the analysis of cotton photosynthetic function. Photosynthesis Research, 2021, 150, 251-262.	2.9	5
28	Single boll weight depends on photosynthetic function of boll–leaf system in field-grown cotton plants under water stress. Photosynthesis Research, 2021, 150, 227-237.	2.9	5
29	Enhanced thermal dissipation confers photoprotection in top leaves despite systemic regulation from lower leaves in cotton. Journal of Agronomy and Crop Science, 2021, 207, 557-564.	3.5	4