
Sundaramurthy Vedachalam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrotreating and oxidative desulfurization of heavy fuel oil into low sulfur marine fuel over dual function NiMo/γ–Al2O3 catalyst. Catalysis Today, 2023, 407, 165-171.	2.2	9
2	Review on impacts of low sulfur regulations on marine fuels and compliance options. Fuel, 2022, 310, 122243.	3.4	62
3	Catalytic oxidative desulfurization of light gas oil over Keggin-type phosphomolybdic acid supported on TUD-1 metallosilicates. Fuel, 2022, 317, 123447.	3.4	8
4	Review on recent advances in adsorptive desulfurization. Fuel Processing Technology, 2021, 214, 106685.	3.7	166
5	Performance of Low-Cost Carbon-Based Adsorbent on Desulfurization of Heavy Gas Oil. ACS Symposium Series, 2021, , 175-187.	0.5	0
6	Performance of geopolymer as adsorbent on desulphurization of heavy gas oil. Canadian Journal of Chemical Engineering, 2021, 99, 2355-2367.	0.9	7
7	Production of jet fuel by hydrorefining of Fischer-Tropsch wax over Pt/Al-TUD-1 bifunctional catalyst. Fuel, 2021, 300, 121008.	3.4	13
8	Influence of Catalyst Acidity on Fine Particle Deposition during Hydrotreating of Bitumen-Derived Heavy Gas Oil. Energy & Fuels, 2021, 35, 16735-16749.	2.5	5
9	Ultrasound-assisted oxidative desulfurization of Arabian extra light oil (AXL) with molecular characterization of the sulfur compounds. Fuel, 2021, 305, 121612.	3.4	17
10	Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts. Reactions, 2021, 2, 457-472.	0.9	3
11	Mesoporous Adsorbents for Desulfurization of Model Diesel Fuel: Optimization, Kinetic, and Thermodynamic Studies. Fuels, 2020, 1, 47-58.	1.3	8
12	Oxidative Desulfurization of Heavy Gas Oil over a Ti–TUD-1-Supported Keggin-Type Molybdenum Heteropolyacid. Energy & Fuels, 2020, 34, 15299-15312.	2.5	24
13	Adsorptive desulfurization through charge-transfer complex using mesoporous adsorbents. Fuel, 2020, 269, 117379.	3.4	15
14	Effects of the operating variables on hydrotreating of heavy gas oil: Experimental, modeling, and kinetic studies. Fuel, 2010, 89, 2536-2543.	3.4	34
15	Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands Bitumen: Experimental and Kinetics. Energy & Fuels, 2010, 24, 772-784.	2.5	21
16	A comparison between ring-opening of decalin on Ir-Pt and Ni-Mo carbide catalysts supported on zeolites. Journal of Molecular Catalysis A, 2009, 304, 77-84.	4.8	52
17	Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports. Journal of Molecular Catalysis A, 2009, 306, 23-32.	4.8	23
18	Effect of Hydrogen Purity on Hydroprocessing of Heavy Gas Oil Derived from Oil-Sands Bitumen. Energy & Fuels, 2009, 23, 2129-2135.	2.5	18

#	Article	IF	CITATIONS
19	Tetraalkylthiomolybdates-derived Co(Ni)Mo/γ-Al2O3 sulfide catalysts for gas oil hydrotreating. Journal of Molecular Catalysis A, 2008, 294, 20-26.	4.8	23
20	The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst. Applied Catalysis A: General, 2008, 335, 204-210.	2.2	41
21	Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst. Applied Catalysis A: General, 2008, 339, 187-195.	2.2	97
22	Hydrotreating of gas oil on SBA-15 supported NiMo catalysts. Microporous and Mesoporous Materials, 2008, 111, 560-568.	2.2	67
23	Phosphorus promoted trimetallic NiMoW/γ-Al2O3 sulfide catalysts in gas oil hydrotreating. Journal of Molecular Catalysis A, 2008, 291, 30-37.	4.8	53
24	Performances of Coâ^'W/γ-Al2O3Catalysts on Hydrotreatment of Light Gas Oil Derived from Athabasca Bitumen. Industrial & Engineering Chemistry Research, 2007, 46, 4778-4786.	1.8	13
25	Selective ring opening of decalin with Pt–Ir on Zr modified MCM-41. Applied Catalysis A: General, 2007, 321, 17-26.	2.2	60
26	Effect of phosphorus addition on the hydrotreating activity of NiMo/Al2O3 carbide catalyst. Catalysis Today, 2007, 125, 239-247.	2.2	18
27	Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen. Applied Catalysis A: General, 2006, 311, 155-163.	2.2	36
28	Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts. Applied Catalysis A: General, 2006, 313, 22-34.	2.2	58
29	Hydrotreating of Heavy Gas Oil Derived from Athabasca Bitumen Over Co–Mo/γ-Al2O3 Catalyst Prepared by Sonochemical Method. Topics in Catalysis, 2006, 37, 147-153.	1.3	12
30	HDN and HDS of different gas oils derived from Athabasca bitumen over phosphorus-doped NiMo/γ-Al2O3 carbides. Applied Catalysis B: Environmental, 2006, 68, 38-48.	10.8	41
31	Effect of EDTA on hydrotreating activity of CoMo/ \hat{I}^3 -Al2O3 catalyst. Catalysis Letters, 2005, 102, 299-306.	1.4	50
32	Deposition of Fine Particles during Hydrotreating of Oil Sands Bitumen-Derived Heavy Gas Oil in a Packed Bed Reactor: Impact of Process Parameters and Surface Charge. Industrial & Engineering Chemistry Research, 0, , .	1.8	1