
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 1993, 362, 127-133.	13.7	1,026
2	Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature, 1993, 364, 802-806.	13.7	619
3	A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15264-15268.	3.3	260
4	International Union of Pharmacology. LIV. Nomenclature and Molecular Relationships of Inwardly Rectifying Potassium Channels. Pharmacological Reviews, 2005, 57, 509-526.	7.1	240
5	RGS8 accelerates G-protein-mediated modulation of K+currents. Nature, 1997, 390, 525-529.	13.7	209
6	Stoichiometry of the KCNQ1Â-ÂKCNE1 ion channel complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18862-18867.	3.3	174
7	Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1α. Nature Structural and Molecular Biology, 2004, 11, 637-642.	3.6	162
8	Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K + channel. Journal of Physiology, 2001, 531, 645-660.	1.3	136
9	Primary Structure of a Dynamin-related Mouse Mitochondrial GTPase and Its Distribution in Brain, Subcellular Localization, and Effect on Mitochondrial Morphology. Journal of Biological Chemistry, 2002, 277, 15834-15842.	1.6	136
10	Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Letters, 2001, 490, 49-53.	1.3	124
11	Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17373-17378.	3.3	105
12	Novel KCNJ2 Mutation in Familial Periodic Paralysis With Ventricular Dysrhythmia. Circulation, 2002, 105, 2592-2594.	1.6	102
13	KCNE1 and KCNE3 Stabilize and/or Slow Voltage Sensing S4 Segment of KCNQ1 Channel. Journal of General Physiology, 2007, 130, 269-281.	0.9	84
14	Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1Â. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1124-1128.	3.3	82
15	Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. Journal of Physiology, 2018, 596, 1833-1845.	1.3	79
16	Density-dependent changes of the pore properties of the P2X2receptor channel. Journal of Physiology, 2004, 558, 31-43.	1.3	76
17	RGS7 and RGS8 Differentially Accelerate G Protein-mediated Modulation of K+ Currents. Journal of Biological Chemistry, 1999, 274, 9899-9904.	1.6	75
18	Regulation of the desensitization and ion selectivity of ATP-gated P2X2channels by phosphoinositides. Journal of Physiology, 2006, 576, 135-149.	1.3	72

#	Article	IF	CITATIONS
19	The Motor Protein Prestin Is a Bullet-shaped Molecule with Inner Cavities. Journal of Biological Chemistry, 2008, 283, 1137-1145.	1.6	66
20	Towards a view of functioning dimeric metabotropic receptors. Current Opinion in Neurobiology, 2005, 15, 289-295.	2.0	65
21	Regulator of G Protein Signaling 8 (RGS8) Requires Its NH2 Terminus for Subcellular Localization and Acute Desensitization of G Protein-gated K+ Channels. Journal of Biological Chemistry, 2001, 276, 5052-5058.	1.6	63
22	Functional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1. Journal of General Physiology, 2006, 127, 401-419.	0.9	59
23	On-Site Energy Supply at Synapses through Monocarboxylate Transporters Maintains Excitatory Synaptic Transmission. Journal of Neuroscience, 2014, 34, 2605-2617.	1.7	55
24	Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10138-10143.	3.3	53
25	Green Tea Polyphenol Epigallocatechin Gallate Activates TRPA1 in an Intestinal Enteroendocrine Cell Line, STC-1. Chemical Senses, 2012, 37, 167-177.	1.1	50
26	Auto-oxidation Products of Epigallocatechin Gallate Activate TRPA1 and TRPV1 in Sensory Neurons. Chemical Senses, 2015, 40, 27-46.	1.1	50
27	OPA1 expression in the normal rat retina and optic nerve. Journal of Comparative Neurology, 2005, 488, 1-10.	0.9	47
28	Localization and developmental changes of the expression of two inward rectifying K+-channel proteins in the rat brain. Brain Research, 1997, 750, 251-263.	1.1	45
29	Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain. Biochemical and Biophysical Research Communications, 2005, 337, 998-1005.	1.0	45
30	The Met268Pro Mutation of Mouse TRPA1 Changes the Effect of Caffeine from Activation to Suppression. Biophysical Journal, 2010, 99, 3609-3618.	0.2	42
31	Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed inXenopusoocytes. Journal of Physiology, 2005, 569, 59-74.	1.3	41
32	Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening. Nature Communications, 2014, 5, 4100.	5.8	38
33	Ser165 in the Second Transmembrane Region of the Kir2.1 Channel Determines its Susceptibility to Blockade by Intracellular Mg2+. Journal of General Physiology, 2002, 120, 677-693.	0.9	34
34	Identification of a site involved in the block by extracellular Mg 2+ and Ba 2+ as well as permeation of K + in the Kir2.1 K + channel. Journal of Physiology, 2002, 544, 665-677.	1.3	34
35	Alternative splicing of RGS8 gene changes the binding property to the M1 muscarinic receptor to confer receptor type-specific Gq regulation. Journal of Neurochemistry, 2006, 99, 1505-1516.	2.1	34
36	Ligand-induced Rearrangements of the GABAB Receptor Revealed by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2010, 285, 10291-10299.	1.6	33

#	Article	IF	CITATIONS
37	Ivermectin activates GIRK channels in a PIP ₂ â€dependent, G _{βγ} â€independent manner and an amino acid residue at the slide helix governs the activation. Journal of Physiology, 2017, 595, 5895-5912.	1.3	33
38	Effects of coexpression with Homer isoforms on the function of metabotropic glutamate receptor 1α. Molecular and Cellular Neurosciences, 2003, 23, 157-168.	1.0	32
39	KCNQ1 channel modulation by KCNE proteins via the voltageâ€sensing domain. Journal of Physiology, 2015, 593, 2617-2625.	1.3	32
40	Sensitivities of Two Zebrafish TRPA1 Paralogs to Chemical and Thermal Stimuli Analyzed in Heterologous Expression Systems. Chemical Senses, 2016, 41, 261-272.	1.1	30
41	Functional identification of Gd3+ binding site of metabotropic glutamate receptor 1α. FEBS Letters, 2003, 545, 233-238.	1.3	29
42	Second coiled oil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks. Journal of Physiology, 2008, 586, 2827-2840.	1.3	29
43	Congenital goitrous hypothyroidism is caused by dysfunction of the iodide transporter SLC26A7. Communications Biology, 2019, 2, 270.	2.0	28
44	The Stoichiometry and Biophysical Properties of the Kv4 Potassium Channel Complex with K+ Channel-interacting Protein (KChIP) Subunits Are Variable, Depending on the Relative Expression Level. Journal of Biological Chemistry, 2014, 289, 17597-17609.	1.6	27
45	A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. Journal of Biological Chemistry, 2017, 292, 12971-12980.	1.6	27
46	Coupling profile of the metabotropic glutamate receptor 1α is regulated by the C-terminal domain. Molecular and Cellular Neurosciences, 2007, 34, 445-452.	1.0	26
47	Voltage- and [ATP]-dependent Gating of the P2X2 ATP Receptor Channel. Journal of General Physiology, 2009, 133, 93-109.	0.9	26
48	Cloning and characterization of a bifunctional metabotropic receptor activated by both extracellular calcium and glutamate. FEBS Letters, 1996, 392, 71-76.	1.3	25
49	A Weakly Inward Rectifying Potassium Channel of the Salmon Brain. Journal of Biological Chemistry, 1996, 271, 15729-15735.	1.6	24
50	Identification of Domains of the Cardiac Inward Rectifying K+Channel, CIR, Involved in the Heteromultimer Formation and in the G-Protein Gating. Biochemical and Biophysical Research Communications, 1996, 227, 240-247.	1.0	23
51	Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis. FEBS Letters, 1998, 435, 69-73.	1.3	23
52	Usefulness of chironomid larvae as indicators of water quality. Medical Entomology and Zoology, 1989, 40, 269-283.	0.0	22
53	Retinal Attachment Instability Is Diversified among Mammalian Melanopsins. Journal of Biological Chemistry, 2015, 290, 27176-27187.	1.6	21
54	The dynamin-related mouse mitochondrial GTPase OPA1 alters the structure of the mitochondrial inner membrane when exogenously introduced into COS-7 cells. Neuroscience Research, 2006, 55, 123-133.	1.0	19

#	Article	IF	CITATIONS
55	Spinophilin inhibits the binding of RGS8 to M1-mAChR but enhances the regulatory function of RGS8. Biochemical and Biophysical Research Communications, 2008, 377, 200-204.	1.0	18
56	Reconstruction of the P2X2 Receptor Reveals a Vase-Shaped Structure with Lateral Tunnels above the Membrane. Structure, 2009, 17, 266-275.	1.6	18
57	Nano-environmental changes by KCNE proteins modify KCNQ channel function. Channels, 2011, 5, 397-401.	1.5	18
58	KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue. Journal of General Physiology, 2011, 138, 521-535.	0.9	18
59	The epithelial sodium channel in the Australian lungfish, <i>Neoceratodus forsteri</i> (Osteichthyes:) Tj ETQq1	1 0.784314 1.2	rgBT /Overld
60	Functional and structural identification of amino acid residues of the P2X ₂ receptor channel critical for the voltage―and [ATP]â€dependent gating. Journal of Physiology, 2009, 587, 5801-5818.	1.3	17
61	Phosphoinositides modulate the voltage dependence of two-pore channel 3. Journal of General Physiology, 2019, 151, 986-1006.	0.9	17
62	Towards the elucidation of the structural-functional relationship of inward rectifying K+ channel family. Neuroscience Research, 1994, 21, 109-117.	1.0	16
63	AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3939-3944.	3.3	16
64	Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system. Biochemical and Biophysical Research Communications, 2017, 494, 194-201.	1.0	16
65	Gi/o-coupled muscarinic receptors co-localize with GIRK channel for efficient channel activation. PLoS ONE, 2018, 13, e0204447.	1.1	16
66	The intra-molecular activation mechanisms of the dimeric metabotropic glutamate receptor 1 differ depending on the type of G proteins. Neuropharmacology, 2011, 61, 832-841.	2.0	15
67	Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels inXenopusoocytes. FEBS Letters, 1998, 422, 307-310.	1.3	13
68	Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4. Biochemical and Biophysical Research Communications, 2009, 380, 832-837.	1.0	13
69	Binding of Gq protein stabilizes the activated state of the muscarinic receptor type 1. Neuropharmacology, 2013, 65, 173-181.	2.0	13
70	Signal transmission within the P2X2 trimeric receptor. Journal of General Physiology, 2014, 143, 761-782.	0.9	13
71	SLO potassium channels antagonize premature decision making in C. elegans. Communications Biology, 2018, 1, 123.	2.0	13
72	Nonâ€sedating antihistamines block Gâ€proteinâ€gated inwardly rectifying K ⁺ channels. British Journal of Pharmacology, 2019, 176, 3161-3179.	2.7	13

#	Article	IF	CITATIONS
73	Effects of spinophilin on the function of RGS8 regulating signals from M2 and M3-mAChRs. NeuroReport, 2009, 20, 1134-1139.	0.6	12
74	Two mutations at different positions in the CNBH domain of the hERG channel accelerate deactivation and impair the interaction with the EAG domain. Journal of Physiology, 2018, 596, 4629-4650.	1.3	12
75	Kv4.2 and Accessory Dipeptidyl Peptidase-like Protein 10 (DPP10) Subunit Preferentially Form a 4:2 (Kv4.2:DPP10) Channel Complex. Journal of Biological Chemistry, 2015, 290, 22724-22733.	1.6	11
76	Structural properties determining low K+ affinity of the selectivity filter in the TWIK1 K+ channel. Journal of Biological Chemistry, 2018, 293, 6969-6984.	1.6	11
77	Structural rearrangements of the motor protein prestin revealed by fluorescence resonance energy transfer. American Journal of Physiology - Cell Physiology, 2009, 297, C290-C298.	2.1	9
78	Analyses of the effects of Gq protein on the activated states of the muscarinic M ₃ receptor and the purinergic P2Y ₁ receptor. Physiological Reports, 2013, 1, e00134.	0.7	9
79	Two Aspects of the Inward Rectification Mechanism. Effects of Cytoplasmic Blockers ant Extracellular K+ on the Inward Rectifier K+ Channel International Heart Journal, 1996, 37, 631-641.	0.6	8
80	A novel ion conducting route besides the central pore in an inherited mutant of Gâ€proteinâ€gated inwardly rectifying K ⁺ channel. Journal of Physiology, 2022, 600, 603-622.	1.3	8
81	Dynamic aspects of functional regulation of the ATP receptor channel P2X ₂ . Journal of Physiology, 2009, 587, 5317-5324.	1.3	7
82	Identification and characterization of Cs ⁺ â€permeable K ⁺ channel current in mouse cerebellar Purkinje cells in lobules 9 and 10 evoked by molecular layer stimulation. European Journal of Neuroscience, 2010, 32, 736-748.	1.2	7
83	Stabilizing effects of G protein on the active conformation of adenosine A 1 receptor differ depending on G protein type. European Journal of Pharmacology, 2016, 788, 122-131.	1.7	7
84	Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system. NeuroReport, 2018, 29, 280-285.	0.6	7
85	Characterization of Heteromultimeric G Protein-coupled Inwardly Rectifying Potassium Channels of the Tunicate Tadpole with a Unique Pore Property. Journal of Biological Chemistry, 2001, 276, 18529-18539.	1.6	6
86	Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. ELife, 2021, 10, .	2.8	6
87	Isolation of a cDNA for a novel 120-kDa GTP-binding protein expressed in motor neurons in the salmon brain. FEBS Letters, 1998, 431, 231-235.	1.3	5
88	Regulatory role of Câ€ŧerminus in the Gâ€protein coupling of the metabotropic glutamate receptor 1. Journal of Neurochemistry, 2008, 107, 1036-1046.	2.1	5
89	Functional properties of axolotl transient receptor potential ankyrin 1 revealed by the heterologous expression system. NeuroReport, 2019, 30, 323-330.	0.6	5
90	Mechanism of hERG inhibition by gating-modifier toxin, APETx1, deduced by functional characterization. BMC Molecular and Cell Biology, 2021, 22, 3.	1.0	5

#	Article	IF	CITATIONS
91	POTASSIUM CURRENTS INDUCED BY MUSCARINIC RECEPTOR ACTIVATION IN THE RAT ADRENAL CHROMAFFIN CELL . Biomedical Research, 1989, 10, 71-81.	0.3	5
92	Phosphoinositide regulates dynamic movement of the S4 voltage sensor in the 2nd repeat in Two-pore channel 3. Journal of Biological Chemistry, 2021, 297, 101425.	1.6	4
93	Voltage―and ATPâ€dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. Journal of Physiology, 2014, 592, 4657-4676.	1.3	3
94	Biophysical research in Okazaki, Japan. Biophysical Reviews, 2020, 12, 237-243.	1.5	3
95	A new world of heme function. Pflugers Archiv European Journal of Physiology, 2020, 472, 547-548.	1.3	3
96	Characterization of sources for the expression cloning of receptors of salmon-type and chicken-2-type gonadotropin releasing hormone (GnRH). Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1994, 19, S92.	0.0	1
97	Functional Expression of GnRH Receptors in Xenopus Oocytes Injected with Salmon Brain RNA Journal of Reproduction and Development, 1996, 42, 283-289.	0.5	1
98	Primary structure and functional expression of a mouse inward rectifier K+ channel and rat G-protein-coupled muscarinic K+ channel Japanese Journal of Electrocardiology, 1995, 15, 106-113.	0.0	1
99	Chapter 11 Structure–Function Relationship of the Inward Rectifier Potassium Channel. Current Topics in Membranes, 1999, , 177-198.	0.5	0
100	Molecular cloning and characterization of a new RGS protein of Medaka. Gene, 2005, 345, 165-171.	1.0	0
101	1P009 Single particle analysis of purinergic P2X2 receptor(1. Protein structure and dynamics (I),Poster) Tj ETQq1	1,0,7843	314 rgBT /Ov
102	NIPS–JP symposium: Cuttingâ€edge approaches towards the functioning mechanisms of membrane proteins. Journal of Physiology, 2015, 593, 2551-2552.	1.3	0
103	Intracellular analysis of masticatory rhythm of trigeminal motoneurons. Japanese Journal of Oral Biology, 1978, 20, 144-153.	0.1	0
104	Primary structure and biophysical properties of inward rectifying K+ channel family. Developments in Cardiovascular Medicine, 1996, , 131-139.	0.1	0
105	Regulatory Mechanisms of GIRK Channel by Small Molecules. Japanese Journal of Electrocardiology, 2020, 40, 107-113.	0.0	0
106	How do Kir3.4 mutations cause hereditary hyperaldosteronism?. Journal of Physiology, 2022, 600, 1277-1278.	1.3	0
107	Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific. Journal of General Physiology, 2022, 154, .	0.9	0