Ludovic Berthier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8167145/ludovic-berthier-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

184 12,184 105 59 h-index g-index citations papers 13,616 7.16 192 5.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
184	Па recherche du verre id目l. <i>Pourlascience Fr</i> , 2022 , № 534 ြavril, 64-71	О	
183	Glasses and Aging, A Statistical Mechanics Perspective on 2022 , 229-296		O
182	Rare events and disorder control the brittle yielding of well-annealed amorphous solids. <i>Physical Review Research</i> , 2022 , 4,	3.9	1
181	Relaxation Dynamics of Non-Brownian Spheres Below Jamming. <i>Journal of Statistical Physics</i> , 2021 , 182, 1	1.5	6
180	Excess wings and asymmetric relaxation spectra in a facilitated trap model. <i>Journal of Chemical Physics</i> , 2021 , 155, 064505	3.9	3
179	Self-Induced Heterogeneity in Deeply Supercooled Liquids. <i>Physical Review Letters</i> , 2021 , 127, 088002	7.4	0
178	A Statistical Mechanics Perspective´on Glasses and Aging 2021 , 1-68		1
177	Depletion of Two-Level Systems in Ultrastable Computer-Generated Glasses. <i>Physical Review Letters</i> , 2020 , 124, 225901	7.4	20
176	Low-frequency vibrations of jammed packings in large spatial dimensions. <i>Physical Review E</i> , 2020 , 101, 052906	2.4	13
175	Glass Stability Changes the Nature of Yielding under Oscillatory Shear. <i>Physical Review Letters</i> , 2020 , 124, 225502	7.4	30
174	Universal Relaxation Dynamics of Sphere Packings below Jamming. <i>Physical Review Letters</i> , 2020 , 124, 058001	7.4	15
173	Glassy Behavior of Sticky Spheres: What Lies beyond Experimental Timescales?. <i>Physical Review Letters</i> , 2020 , 125, 258004	7.4	3
172	Brittle yielding of amorphous solids at finite shear rates. <i>Physical Review Materials</i> , 2020 , 4,	3.2	22
171	Predicting plasticity in disordered solids from structural indicators. <i>Physical Review Materials</i> , 2020 , 4,	3.2	44
170	Role of fluctuations in the yielding transition of two-dimensional glasses. <i>Physical Review Research</i> , 2020 , 2,	3.9	10
169	Analogies between growing dense active matter and soft driven glasses. <i>Physical Review Research</i> , 2020 , 2,	3.9	3
168	On the overlap between configurations in glassy liquids. <i>Journal of Chemical Physics</i> , 2020 , 153, 224502	3.9	1

(2019-2020)

167	Random-field Ising model criticality in a glass-forming liquid. Physical Review E, 2020, 102, 042129	2.4	1
166	How to "measure" a structural relaxation time that is too long to be measured?. <i>Journal of Chemical Physics</i> , 2020 , 153, 044501	3.9	12
165	Stable glassy configurations of the Kob-Andersen model using swap Monte Carlo. <i>Journal of Chemical Physics</i> , 2020 , 153, 134505	3.9	3
164	Finite Dimensional Vestige of Spinodal Criticality above the Dynamical Glass Transition. <i>Physical Review Letters</i> , 2020 , 125, 108001	7.4	12
163	Ultrastable Metallic Glasses In Silico. <i>Physical Review Letters</i> , 2020 , 125, 085505	7.4	9
162	Front-Mediated Melting of Isotropic Ultrastable Glasses. <i>Physical Review Letters</i> , 2019 , 123, 175501	7.4	8
161	Does the Adam-Gibbs relation hold in simulated supercooled liquids?. <i>Journal of Chemical Physics</i> , 2019 , 151, 084504	3.9	27
160	Glassy dynamics in dense systems of active particles. <i>Journal of Chemical Physics</i> , 2019 , 150, 200901	3.9	56
159	Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids. Journal of Statistical Mechanics: Theory and Experiment, 2019 , 2019, 064004	1.9	26
158	Multiple symmetry sustaining phase transitions in spin ice. <i>Physical Review B</i> , 2019 , 99,	3.3	5
157	Configurational entropy of glass-forming liquids. <i>Journal of Chemical Physics</i> , 2019 , 150, 160902		2.4
		3.9	34
156	Hierarchical Landscape of Hard Disk Glasses. <i>Physical Review X</i> , 2019 , 9,	3.9 9.1	20
156 155	Hierarchical Landscape of Hard Disk Glasses. <i>Physical Review X</i> , 2019 , 9, Can the glass transition be explained without a growing static length scale?. <i>Journal of Chemical Physics</i> , 2019 , 150, 094501		
	Can the glass transition be explained without a growing static length scale?. Journal of Chemical	9.1	20
155	Can the glass transition be explained without a growing static length scale?. <i>Journal of Chemical Physics</i> , 2019 , 150, 094501 Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions. <i>Physical Review E</i> , 2019 ,	9.1 3.9	20
155 154	Can the glass transition be explained without a growing static length scale?. <i>Journal of Chemical Physics</i> , 2019 , 150, 094501 Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions. <i>Physical Review E</i> , 2019 , 99, 031301	9.1 3.9 2.4	20 25 11
155 154 153	Can the glass transition be explained without a growing static length scale?. <i>Journal of Chemical Physics</i> , 2019 , 150, 094501 Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions. <i>Physical Review E</i> , 2019 , 99, 031301 Zero-temperature glass transition in two dimensions. <i>Nature Communications</i> , 2019 , 10, 1508	9.1 3.9 2.4 17.4	20 25 11 46

149	Nature of excitations and defects in structural glasses. <i>Nature Communications</i> , 2019 , 10, 5102	17.4	18
148	A localization transition underlies the mode-coupling crossover of glasses. <i>SciPost Physics</i> , 2019 , 7,	6.1	14
147	Marginally stable phases in mean-field structural glasses. <i>Physical Review E</i> , 2019 , 99, 012107	2.4	27
146	Low-frequency vibrational modes of stable glasses. <i>Nature Communications</i> , 2019 , 10, 26	17.4	75
145	Glass transition of soft colloids. <i>Physical Review E</i> , 2018 , 97, 040601	2.4	48
144	Local order and crystallization of dense polydisperse hard spheres. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 144004	1.8	17
143	Discontinuous shear thickening in Brownian suspensions. <i>Physical Review E</i> , 2018 , 98, 012609	2.4	21
142	Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6656-6661	11.5	130
141	Configurational entropy of polydisperse supercooled liquids. <i>Journal of Chemical Physics</i> , 2018 , 149, 15	45,091	16
140	Does the configurational entropy of polydisperse particles exist?. <i>Journal of Chemical Physics</i> , 2017 , 146, 014502	3.9	26
139	Origin of Ultrastability in Vapor-Deposited Glasses. <i>Physical Review Letters</i> , 2017 , 119, 188002	7.4	40
138	Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1135	6 ⁻ 17536	58 ²
137	Density controls the kinetic stability of ultrastable glasses. <i>Europhysics Letters</i> , 2017 , 119, 36003	1.6	30
136	Yield stress materials in soft condensed matter. Reviews of Modern Physics, 2017, 89,	40.5	343
135	Ultra-long-range dynamic correlations in a microscopic model for aging gels. <i>Physical Review E</i> , 2017 , 95, 060601	2.4	19
134	Models and Algorithms for the Next Generation of Glass Transition Studies. <i>Physical Review X</i> , 2017 , 7,	9.1	138
133	Large-scale structure of randomly jammed spheres. <i>Physical Review E</i> , 2017 , 95, 052125	2.4	17
132	Discontinuous fluidization transition in time-correlated assemblies of actively deforming particles. <i>Physical Review E</i> , 2017 , 96, 050601	2.4	20

131	Absence of Marginal Stability in a Structural Glass. <i>Physical Review Letters</i> , 2017 , 119, 205501	7.4	48
130	How active forces influence nonequilibrium glass transitions. <i>New Journal of Physics</i> , 2017 , 19, 125006	2.9	43
129	Exploring the jamming transition over a wide range of critical densities. SciPost Physics, 2017, 3,	6.1	35
128	An efficient scheme for sampling fast dynamics at a low average data acquisition rate. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 075201	1.8	6
127	Comment on "Constant Stress and Pressure Rheology of Colloidal Suspensions". <i>Physical Review Letters</i> , 2016 , 116, 179801	7.4	2
126	Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond. <i>Physical Review Letters</i> , 2016 , 116, 238002	7.4	95
125	Criticality and correlated dynamics at the irreversibility transition in periodically driven colloidal suspensions. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2016 , 2016, 033501	1.9	14
124	Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids. <i>Journal of Chemical Physics</i> , 2016 , 144, 024501	3.9	20
123	Note: Physical mechanisms for the bulk melting of stable glasses. <i>Journal of Chemical Physics</i> , 2016 , 145, 076101	3.9	1
122	Point-to-set lengths, local structure, and glassiness. <i>Physical Review E</i> , 2016 , 94, 032605	2.4	33
121	Growing timescales and lengthscales characterizing vibrations of amorphous solids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8397-401	11.5	82
120	The melting of stable glasses is governed by nucleation-and-growth dynamics. <i>Journal of Chemical Physics</i> , 2016 , 144, 244506	3.9	18
119	Facets of glass physics. <i>Physics Today</i> , 2016 , 69, 40-46	0.9	105
118	The nonequilibrium glassy dynamics of self-propelled particles. <i>Soft Matter</i> , 2016 , 12, 7136-49	3.6	57
117	Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. <i>Physical Review E</i> , 2016 , 94, 022615	2.4	64
116	Hyperuniform density fluctuations and diverging dynamic correlations in periodically driven colloidal suspensions. <i>Physical Review Letters</i> , 2015 , 114, 148301	7.4	71
115	Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. <i>Physical Review E</i> , 2015 , 92, 012309	2.4	29
114	Nonequilibrium Equation of State in Suspensions of Active Colloids. <i>Physical Review X</i> , 2015 , 5,	9.1	113

113	Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory. <i>Physical Review E</i> , 2015 , 91, 062304	2.4	82
112	Relaxation dynamics in a transient network fluid with competing gel and glass phases. <i>Journal of Chemical Physics</i> , 2015 , 142, 174503	3.9	16
111	From single-particle to collective effective temperatures in an active fluid of self-propelled particles. <i>Europhysics Letters</i> , 2015 , 111, 60006	1.6	60
110	Evidence for a Disordered Critical Point in a Glass-Forming Liquid. <i>Physical Review Letters</i> , 2015 , 114, 205701	7.4	41
109	Structure and dynamics of coupled viscous liquids. <i>Molecular Physics</i> , 2015 , 113, 2707-2715	1.7	5
108	Diverging viscosity and soft granular rheology in non-Brownian suspensions. <i>Physical Review E</i> , 2015 , 91, 012203	2.4	43
107	Crossovers in the dynamics of supercooled liquids probed by an amorphous wall. <i>Physical Review E</i> , 2014 , 89, 052311	2.4	31
106	Novel approach to numerical measurements of the configurational entropy in supercooled liquids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11668-72	11.5	40
105	Equilibrium ultrastable glasses produced by random pinning. <i>Journal of Chemical Physics</i> , 2014 , 141, 224	45@3	26
104	Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. <i>Physical Review E</i> , 2014 , 89, 062301	2.4	74
103	Nonequilibrium glassy dynamics of self-propelled hard disks. <i>Physical Review Letters</i> , 2014 , 112, 220602	² 7·4	109
102	Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid. <i>Journal of Chemical Physics</i> , 2014 , 140, 164502	3.9	46
101	Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles. <i>Europhysics Letters</i> , 2014 , 107, 28009	1.6	39
100	Disentangling glass and jamming physics in the rheology of soft materials. <i>Soft Matter</i> , 2013 , 9, 7669	3.6	88
99	Yield stress in amorphous solids: a mode-coupling-theory analysis. <i>Physical Review E</i> , 2013 , 88, 052305	2.4	16
98	Dynamic criticality at the jamming transition. <i>Journal of Chemical Physics</i> , 2013 , 138, 12A507	3.9	87
97	Non-equilibrium glass transitions in driven and active matter. <i>Nature Physics</i> , 2013 , 9, 310-314	16.2	177
96	Probing a liquid to glass transition in equilibrium. <i>Physical Review Letters</i> , 2013 , 110, 245702	7.4	88

95	Overlap fluctuations in glass-forming liquids. <i>Physical Review E</i> , 2013 , 88, 022313	2.4	59
94	Spatial Correlations in Glass-Forming Liquids Across The Mode-Coupling Crossover. <i>Physics Procedia</i> , 2012 , 34, 70-79		10
93	Reply to "Characterizing dynamic length scales in glass-forming liquids". <i>Nature Physics</i> , 2012 , 8, 697-69	716.2	14
92	Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. <i>Nature Physics</i> , 2012 , 8, 164-167	16.2	164
91	Unified study of glass and jamming rheology in soft particle systems. <i>Physical Review Letters</i> , 2012 , 109, 018301	7.4	174
90	Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. <i>Physical Review E</i> , 2012 , 85, 021503	2.4	49
89	Static point-to-set correlations in glass-forming liquids. <i>Physical Review E</i> , 2012 , 85, 011102	2.4	141
88	Finite-size effects in the dynamics of glass-forming liquids. <i>Physical Review E</i> , 2012 , 86, 031502	2.4	64
87	Random pinning in glassy spin models with plaquette interactions. <i>Physical Review E</i> , 2012 , 85, 021120	2.4	36
86	Can the jamming transition be described using equilibrium statistical mechanics?. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2011 , 2011, P01004	1.9	5
85	Theoretical perspective on the glass transition and amorphous materials. <i>Reviews of Modern Physics</i> , 2011 , 83, 587-645	40.5	1298
84	Microscopic mean-field theory of the jamming transition. <i>Physical Review Letters</i> , 2011 , 106, 135702	7.4	48
83	Overview of different characterizations of dynamic heterogeneity 2011 , 68-109		12
82	Inducing a Curl with a Stretch. <i>Physics Magazine</i> , 2011 , 4,	1.1	161
81	Testing "microscopic" theories of glass-forming liquids. European Physical Journal E, 2011, 34, 96	1.5	36
80	The role of attractive forces in viscous liquids. <i>Journal of Chemical Physics</i> , 2011 , 134, 214503	3.9	76
79	Suppressed compressibility at large scale in jammed packings of size-disperse spheres. <i>Physical Review Letters</i> , 2011 , 106, 120601	7.4	64

77	Microscopic theory of the jamming transition of harmonic spheres. <i>Physical Review E</i> , 2011 , 84, 051103	2.4	74
76	Highly nonlinear dynamics in a slowly sedimenting colloidal gel. <i>Physical Review Letters</i> , 2011 , 106, 1183	3 9 24	40
75	Influence of the glass transition on the liquid-gas spinodal decomposition. <i>Physical Review Letters</i> , 2011 , 106, 125702	7.4	56
74	Brambilla et al. Reply:. <i>Physical Review Letters</i> , 2010 , 104,	7.4	15
73	Brambilla et al. Reply:. <i>Physical Review Letters</i> , 2010 , 105,	7.4	12
72	When gel and glass meet: a mechanism for multistep relaxation. <i>Physical Review E</i> , 2010 , 81, 040502	2.4	25
71	Scaling of the glassy dynamics of soft repulsive particles: a mode-coupling approach. <i>Physical Review E</i> , 2010 , 81, 031505	2.4	25
70	Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. <i>Physical Review Letters</i> , 2010 , 104, 165701	7.4	172
69	Critical test of the mode-coupling theory of the glass transition. <i>Physical Review E</i> , 2010 , 82, 031502	2.4	61
68	Subdiffusion and intermittent dynamic fluctuations in the aging regime of concentrated hard spheres. <i>Physical Review E</i> , 2010 , 82, 031503	2.4	46
67	Increasing the density melts ultrasoft colloidal glasses. <i>Physical Review E</i> , 2010 , 82, 060501	2.4	69
66	Anomalous structural evolution of soft particles: equibrium liquid state theory. <i>Soft Matter</i> , 2010 , 6, 29	79 .6	37
65	Superdiffusive, heterogeneous, and collective particle motion near the fluid-solid transition in athermal disordered materials. <i>Europhysics Letters</i> , 2010 , 90, 20005	1.6	54
64	Glass transition of dense fluids of hard and compressible spheres. <i>Physical Review E</i> , 2009 , 80, 021502	2.4	170
63	Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. <i>Physical Review Letters</i> , 2009 , 102, 085703	7.4	279
62	Dynamic light scattering measurements in the activated regime of dense colloidal hard spheres. Journal of Statistical Mechanics: Theory and Experiment, 2009 , 2009, P07015	1.9	47
61	Nonperturbative effect of attractive forces in viscous liquids. <i>Physical Review Letters</i> , 2009 , 103, 17060	17.4	123
60	Compressing nearly hard sphere fluids increases glass fragility. <i>Europhysics Letters</i> , 2009 , 86, 10001	1.6	115

59	Static and dynamic properties of a reversible gel 2009 ,		5
58	A random walk description of the heterogeneous glassy dynamics of attracting colloids. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 244126	1.8	28
57	Revisiting the slow dynamics of a silica melt using Monte Carlo simulations. <i>Physical Review E</i> , 2007 , 76, 011507	2.4	46
56	Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations. <i>Journal of Chemical Physics</i> , 2007 , 126, 184504	3.9	146
55	The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 205130	1.8	101
54	Non-equilibrium dynamics of spin facilitated glass models. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2007 , 2007, P07017-P07017	1.9	25
53	Structure and dynamics of glass formers: predictability at large length scales. <i>Physical Review E</i> , 2007 , 76, 041509	2.4	81
52	Efficient measurement of linear susceptibilities in molecular simulations: application to aging supercooled liquids. <i>Physical Review Letters</i> , 2007 , 98, 220601	7.4	50
51	Heterogeneous diffusion in a reversible gel. <i>Physical Review Letters</i> , 2007 , 98, 135503	7.4	68
50	Course 13 The slow dynamics of glassy materials: Insights from computer simulations. <i>Les Houches Summer School Proceedings</i> , 2007 , 85, 473-482		
49	Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study. <i>Journal of Chemical Physics</i> , 2007 , 127, 114512	3.9	79
48	Universal nature of particle displacements close to glass and jamming transitions. <i>Physical Review Letters</i> , 2007 , 99, 060604	7.4	291
47	Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence. <i>Physical Review E</i> , 2007 , 76, 041510	2.4	204
46	Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. <i>Journal of Chemical Physics</i> , 2007 , 126, 184503	3.9	212
45	Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2006 , 2006, P12005-P12005	1.9	13
44	Activated aging dynamics and negative fluctuation-dissipation ratios. <i>Physical Review Letters</i> , 2006 , 96, 030602	7.4	26
43	Dynamic heterogeneity in the Glauberling chain. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2005 , 2005, P05002	1.9	8
42	Direct experimental evidence of a growing length scale accompanying the glass transition. <i>Science</i> , 2005 , 310, 1797-800	33.3	658

41	Numerical study of a fragile three-dimensional kinetically constrained model. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3578-85	3.4	47
40	Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. <i>Physical Review E</i> , 2005 , 71, 041505	2.4	220
39	Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S3571-S3577	1.8	18
38	Ageing and ultra-slow equilibration in concentrated colloidal hard spheres. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S3543-S3549	1.8	32
37	Static and dynamic length scales in a simple glassy plaquette model. <i>Physical Review E</i> , 2005 , 72, 01610	32.4	27
36	Temperature cycles in the Heisenberg spin glass. <i>Physical Review B</i> , 2005 , 71,	3.3	23
35	Renormalization group study of a kinetically constrained model for strong glasses. <i>Physical Review E</i> , 2005 , 71, 026128	2.4	43
34	Spatially heterogeneous dynamics in a model for granular compaction. <i>Physical Review E</i> , 2005 , 72, 010	30.14	14
33	Length scale for the onset of Fickian diffusion in supercooled liquids. <i>Europhysics Letters</i> , 2005 , 69, 320	-3 <u>1</u> 26	143
32	Time and length scales in spin glasses. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S729-S734	1.8	10
31	Dynamic criticality in glass-forming liquids. <i>Physical Review Letters</i> , 2004 , 92, 185705	7.4	154
30	Reply to Comment on Eluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models **Physical Review E, 2004, 70,	2.4	14
29	Time and length scales in supercooled liquids. <i>Physical Review E</i> , 2004 , 69, 020201	2.4	187
28	Heterogeneous dynamics of coarsening systems. <i>Physical Review Letters</i> , 2004 , 93, 115701	7.4	69
27	Aging dynamics of the Heisenberg spin glass. <i>Physical Review B</i> , 2004 , 69,	3.3	43
26	A few bubbles in a glass 2004 ,		2
25	Energetics of clusters in the two-dimensional Gaussian Ising spin glass. <i>Journal of Physics A</i> , 2003 , 36, 10835-10846		6
24	A consequence of local equilibration and heterogeneity in glassy materials. <i>Journal of Physics A</i> , 2003 , 36, 10667-10681		1

(2001-2003)

23	Yield stress, heterogeneities and activated processes in soft glassy materials. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S933-S943	1.8	29	
22	Shear localization in a model glass. <i>Physical Review Letters</i> , 2003 , 90, 095702	7.4	190	
21	Nontopographic description of inherent structure dynamics in glassformers. <i>Journal of Chemical Physics</i> , 2003 , 119, 4367-4371	3.9	69	
20	Finite-size scaling analysis of the glass transition. <i>Physical Review Letters</i> , 2003 , 91, 055701	7.4	52	
19	Fluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models. <i>Physical Review E</i> , 2003 , 68, 016116	2.4	56	
18	Real space origin of temperature crossovers in supercooled liquids. <i>Physical Review E</i> , 2003 , 68, 041201	2.4	97	
17	Comment on "Symmetrical temperature-chaos effect with positive and negative temperature shifts in a spin glass". <i>Physical Review Letters</i> , 2003 , 90, 059701; author reply 059702	7.4	15	
16	Shearing a glassy material: numerical tests of nonequilibrium mode-coupling approaches and experimental proposals. <i>Physical Review Letters</i> , 2002 , 89, 095702	7.4	155	
15	Geometrical aspects of aging and rejuvenation in the Ising spin glass: A numerical study. <i>Physical Review B</i> , 2002 , 66,	3.3	145	
14	Surfing on a critical line: Rejuvenation without chaos, memory without a hierarchical phase space. <i>Europhysics Letters</i> , 2002 , 58, 35-41	1.6	33	
13	Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid. <i>Journal of Chemical Physics</i> , 2002 , 116, 6228-6242	3.9	235	
12	Real-space application of the mean-field description of spin-glass dynamics. <i>Physical Review Letters</i> , 2001 , 87, 087204	7.4	32	
11	Glassy systems under time-dependent driving forces: application to slow granular rheology. <i>Physical Review E</i> , 2001 , 63, 051302	2.4	41	
10	Phase separation in a homogeneous shear flow: morphology, growth laws, and dynamic scaling. <i>Physical Review E</i> , 2001 , 63, 051503	2.4	38	
9	Phase separation in a chaotic flow. <i>Physical Review Letters</i> , 2001 , 86, 2014-7	7.4	19	
8	Dynamic ultrametricity in spin glasses. <i>Physical Review E</i> , 2001 , 63, 016105	2.4	14	
7	Fluctuation-dissipation relation in a sheared fluid. <i>Physical Review E</i> , 2001 , 63, 012503	2.4	89	
6	Nonequilibrium critical dynamics of the two-dimensionalXYmodel. <i>Journal of Physics A</i> , 2001 , 34, 1805-	1824	103	

5	Sub-aging in a domain growth model. European Physical Journal B, 2000, 17, 689-692	1.2	11
4	Coriolis force in geophysics: an elementary introduction and examples. <i>European Journal of Physics</i> , 2000 , 21, 359-366	0.8	4
3	A two-time-scale, two-temperature scenario for nonlinear rheology. <i>Physical Review E</i> , 2000 , 61, 5464-	722.4	185
2	Response function of coarsening systems. <i>European Physical Journal B</i> , 1999 , 11, 635-641	1.2	81
1	Microscopic origin of excess wings in relaxation spectra of supercooled liquids. <i>Nature Physics</i> ,	16.2	3