
## Ludovic Berthier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167145/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Theoretical perspective on the glass transition and amorphous materials. Reviews of Modern Physics, 2011, 83, 587-645.                                                                                     | 16.4 | 1,605     |
| 2  | Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition. Science, 2005, 310, 1797-1800.                                                                                   | 6.0  | 721       |
| 3  | Yield stress materials in soft condensed matter. Reviews of Modern Physics, 2017, 89, .                                                                                                                    | 16.4 | 511       |
| 4  | Universal Nature of Particle Displacements close to Glass and Jamming Transitions. Physical Review<br>Letters, 2007, 99, 060604.                                                                           | 2.9  | 352       |
| 5  | Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass<br>Transition. Physical Review Letters, 2009, 102, 085703.                                                        | 2.9  | 300       |
| 6  | Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid. Journal of Chemical Physics, 2002, 116, 6228-6242.                                                                        | 1.2  | 257       |
| 7  | Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios.<br>Physical Review E, 2005, 71, 041505.                                                                   | 0.8  | 243       |
| 8  | Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. Journal of Chemical Physics, 2007, 126, 184503.                                 | 1.2  | 229       |
| 9  | Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence. Physical Review E, 2007, 76, 041510.                                             | 0.8  | 226       |
| 10 | Non-equilibrium glass transitions in driven and active matter. Nature Physics, 2013, 9, 310-314.                                                                                                           | 6.5  | 226       |
| 11 | Unified study of glass and jamming rheology in soft particle systems. Physical Review Letters, 2012, 109, 018301.                                                                                          | 2.9  | 206       |
| 12 | Shear Localization in a Model Glass. Physical Review Letters, 2003, 90, 095702.                                                                                                                            | 2.9  | 203       |
| 13 | Time and length scales in supercooled liquids. Physical Review E, 2004, 69, 020201.                                                                                                                        | 0.8  | 202       |
| 14 | A two-time-scale, two-temperature scenario for nonlinear rheology. Physical Review E, 2000, 61,<br>5464-5472.                                                                                              | 0.8  | 200       |
| 15 | Jamming Transitions in Amorphous Packings of Frictionless Spheres Occur over a Continuous Range<br>of Volume Fractions. Physical Review Letters, 2010, 104, 165701.                                        | 2.9  | 198       |
| 16 | Models and Algorithms for the Next Generation of Glass Transition Studies. Physical Review X, 2017, 7,                                                                                                     | 2.8  | 195       |
| 17 | Random critical point separates brittle and ductile yielding transitions in amorphous materials.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6656-6661. | 3.3  | 195       |
| 18 | Dynamic Heterogeneity in Amorphous Materials. Physics Magazine, 0, 4, .                                                                                                                                    | 0.1  | 193       |

| #  | Article                                                                                                                                                                        | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glass transition of dense fluids of hard and compressible spheres. Physical Review E, 2009, 80, 021502.                                                                        | 0.8 | 189       |
| 20 | Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nature<br>Physics, 2012, 8, 164-167.                                                     | 6.5 | 189       |
| 21 | Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals. Physical Review Letters, 2002, 89, 095702.                  | 2.9 | 172       |
| 22 | Dynamic Criticality in Glass-Forming Liquids. Physical Review Letters, 2004, 92, 185705.                                                                                       | 2.9 | 163       |
| 23 | Length scale for the onset of Fickian diffusion in supercooled liquids. Europhysics Letters, 2005, 69, 320-326.                                                                | 0.7 | 163       |
| 24 | Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations. Journal of Chemical Physics, 2007, 126, 184504. | 1.2 | 162       |
| 25 | Geometrical aspects of aging and rejuvenation in the Ising spin glass:â€, A numerical study. Physical<br>Review B, 2002, 66, .                                                 | 1.1 | 155       |
| 26 | Static point-to-set correlations in glass-forming liquids. Physical Review E, 2012, 85, 011102.                                                                                | 0.8 | 155       |
| 27 | Nonperturbative Effect of Attractive Forces in Viscous Liquids. Physical Review Letters, 2009, 103, 170601.                                                                    | 2.9 | 139       |
| 28 | Nonequilibrium Glassy Dynamics of Self-Propelled Hard Disks. Physical Review Letters, 2014, 112, 220602.                                                                       | 2.9 | 135       |
| 29 | Facets of glass physics. Physics Today, 2016, 69, 40-46.                                                                                                                       | 0.3 | 132       |
| 30 | Nonequilibrium Equation of State in Suspensions of Active Colloids. Physical Review X, 2015, 5, .                                                                              | 2.8 | 131       |
| 31 | Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond. Physical Review Letters, 2016, 116, 238002.                                                         | 2.9 | 127       |
| 32 | Low-frequency vibrational modes of stable glasses. Nature Communications, 2019, 10, 26.                                                                                        | 5.8 | 124       |
| 33 | Compressing nearly hard sphere fluids increases glass fragility. Europhysics Letters, 2009, 86, 10001.                                                                         | 0.7 | 121       |
| 34 | The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. Journal of Physics<br>Condensed Matter, 2007, 19, 205130.                                            | 0.7 | 112       |
| 35 | Predicting plasticity in disordered solids from structural indicators. Physical Review Materials, 2020, 4, .                                                                   | 0.9 | 112       |
| 36 | Probing a Liquid to Glass Transition in Equilibrium. Physical Review Letters, 2013, 110, 245702.                                                                               | 2.9 | 108       |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nonequilibrium critical dynamics of the two-dimensionalXYmodel. Journal of Physics A, 2001, 34, 1805-1824.                                                                                                      | 1.6 | 107       |
| 38 | Real space origin of temperature crossovers in supercooled liquids. Physical Review E, 2003, 68, 041201.                                                                                                        | 0.8 | 106       |
| 39 | Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter, 2013, 9, 7669.                                                                                                          | 1.2 | 106       |
| 40 | Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory. Physical Review E, 2015, 91, 062304.                                                        | 0.8 | 102       |
| 41 | Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11356-11361. | 3.3 | 102       |
| 42 | Growing timescales and lengthscales characterizing vibrations of amorphous solids. Proceedings of the United States of America, 2016, 113, 8397-8401.                                                           | 3.3 | 99        |
| 43 | Dynamic criticality at the jamming transition. Journal of Chemical Physics, 2013, 138, 12A507.                                                                                                                  | 1.2 | 98        |
| 44 | Structure and dynamics of glass formers: Predictability at large length scales. Physical Review E, 2007, 76, 041509.                                                                                            | 0.8 | 97        |
| 45 | Fluctuation-dissipation relation in a sheared fluid. Physical Review E, 2000, 63, 012503.                                                                                                                       | 0.8 | 94        |
| 46 | Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.<br>Physical Review E, 2014, 89, 062301.                                                                      | 0.8 | 89        |
| 47 | Hyperuniform Density Fluctuations and Diverging Dynamic Correlations in Periodically Driven Colloidal Suspensions. Physical Review Letters, 2015, 114, 148301.                                                  | 2.9 | 89        |
| 48 | The role of attractive forces in viscous liquids. Journal of Chemical Physics, 2011, 134, 214503.                                                                                                               | 1.2 | 86        |
| 49 | Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Physical Review E, 2016, 94, 022615.                                                  | 0.8 | 86        |
| 50 | Response function of coarsening systems. European Physical Journal B, 1999, 11, 635-641.                                                                                                                        | 0.6 | 85        |
| 51 | Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study. Journal of Chemical Physics, 2007, 127, 114512.                                               | 1.2 | 83        |
| 52 | Glassy dynamics in dense systems of active particles. Journal of Chemical Physics, 2019, 150, 200901.                                                                                                           | 1.2 | 82        |
| 53 | Heterogeneous Diffusion in a Reversible Gel. Physical Review Letters, 2007, 98, 135503.                                                                                                                         | 2.9 | 80        |
| 54 | Microscopic theory of the jamming transition of harmonic spheres. Physical Review E, 2011, 84, 051103.                                                                                                          | 0.8 | 80        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Increasing the density melts ultrasoft colloidal glasses. Physical Review E, 2010, 82, 060501.                                                                        | 0.8 | 78        |
| 56 | The nonequilibrium glassy dynamics of self-propelled particles. Soft Matter, 2016, 12, 7136-7149.                                                                     | 1.2 | 78        |
| 57 | Heterogeneous Dynamics of Coarsening Systems. Physical Review Letters, 2004, 93, 115701.                                                                              | 2.9 | 77        |
| 58 | Suppressed Compressibility at Large Scale in Jammed Packings of Size-Disperse Spheres. Physical Review<br>Letters, 2011, 106, 120601.                                 | 2.9 | 75        |
| 59 | Nontopographic description of inherent structure dynamics in glassformers. Journal of Chemical Physics, 2003, 119, 4367-4371.                                         | 1.2 | 74        |
| 60 | Influence of the Glass Transition on the Liquid-Gas Spinodal Decomposition. Physical Review Letters, 2011, 106, 125702.                                               | 2.9 | 73        |
| 61 | Finite-size effects in the dynamics of glass-forming liquids. Physical Review E, 2012, 86, 031502.                                                                    | 0.8 | 73        |
| 62 | Zero-temperature glass transition in two dimensions. Nature Communications, 2019, 10, 1508.                                                                           | 5.8 | 72        |
| 63 | Critical test of the mode-coupling theory of the glass transition. Physical Review E, 2010, 82, 031502.                                                               | 0.8 | 71        |
| 64 | Configurational entropy of glass-forming liquids. Journal of Chemical Physics, 2019, 150, 160902.                                                                     | 1.2 | 71        |
| 65 | From single-particle to collective effective temperatures in an active fluid of self-propelled particles.<br>Europhysics Letters, 2015, 111, 60006.                   | 0.7 | 69        |
| 66 | Glass transition of soft colloids. Physical Review E, 2018, 97, 040601.                                                                                               | 0.8 | 69        |
| 67 | Overlap fluctuations in glass-forming liquids. Physical Review E, 2013, 88, 022313.                                                                                   | 0.8 | 68        |
| 68 | Absence of Marginal Stability in a Structural Glass. Physical Review Letters, 2017, 119, 205501.                                                                      | 2.9 | 62        |
| 69 | Superdiffusive, heterogeneous, and collective particle motion near the fluid-solid transition in athermal disordered materials. Europhysics Letters, 2010, 90, 20005. | 0.7 | 61        |
| 70 | Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid. Journal of Chemical Physics, 2014, 140, 164502.      | 1.2 | 61        |
| 71 | Glass Stability Changes the Nature of Yielding under Oscillatory Shear. Physical Review Letters, 2020, 124, 225502.                                                   | 2.9 | 60        |
| 72 | Fluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models. Physical<br>Review E, 2003, 68, 016116.                                    | 0.8 | 59        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | How active forces influence nonequilibrium glass transitions. New Journal of Physics, 2017, 19, 125006.                                                                                                     | 1.2 | 57        |
| 74 | Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Physical Review E, 2012, 85, 021503.                                                                                     | 0.8 | 55        |
| 75 | Origin of Ultrastability in Vapor-Deposited Glasses. Physical Review Letters, 2017, 119, 188002.                                                                                                            | 2.9 | 55        |
| 76 | Finite-Size Scaling Analysis of the Glass Transition. Physical Review Letters, 2003, 91, 055701.                                                                                                            | 2.9 | 54        |
| 77 | Numerical Study of a Fragile Three-Dimensional Kinetically Constrained Model. Journal of Physical Chemistry B, 2005, 109, 3578-3585.                                                                        | 1.2 | 54        |
| 78 | Efficient Measurement of Linear Susceptibilities in Molecular Simulations: Application to Aging<br>Supercooled Liquids. Physical Review Letters, 2007, 98, 220601.                                          | 2.9 | 54        |
| 79 | Diverging viscosity and soft granular rheology in non-Brownian suspensions. Physical Review E, 2015, 91, 012203.                                                                                            | 0.8 | 53        |
| 80 | Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids.<br>Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 064004.                            | 0.9 | 51        |
| 81 | Revisiting the slow dynamics of a silica melt using Monte Carlo simulations. Physical Review E, 2007, 76, 011507.                                                                                           | 0.8 | 50        |
| 82 | Dynamic light scattering measurements in the activated regime of dense colloidal hard spheres.<br>Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P07015.                              | 0.9 | 50        |
| 83 | Subdiffusion and intermittent dynamic fluctuations in the aging regime of concentrated hard spheres. Physical Review E, 2010, 82, 031503.                                                                   | 0.8 | 50        |
| 84 | Microscopic Mean-Field Theory of the Jamming Transition. Physical Review Letters, 2011, 106, 135702.                                                                                                        | 2.9 | 50        |
| 85 | Renormalization group study of a kinetically constrained model for strong glasses. Physical Review E, 2005, 71, 026128.                                                                                     | 0.8 | 49        |
| 86 | Gardner physics in amorphous solids and beyond. Journal of Chemical Physics, 2019, 151, 010901.                                                                                                             | 1.2 | 48        |
| 87 | Novel approach to numerical measurements of the configurational entropy in supercooled liquids.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11668-11672. | 3.3 | 47        |
| 88 | Depletion of Two-Level Systems in Ultrastable Computer-Generated Glasses. Physical Review Letters,<br>2020, 124, 225901.                                                                                    | 2.9 | 47        |
| 89 | Exploring the jamming transition over a wide range of critical densities. SciPost Physics, 2017, 3, .                                                                                                       | 1.5 | 47        |
| 90 | Glassy systems under time-dependent driving forces: Application to slow granular rheology. Physical<br>Review E, 2001, 63, 051302.                                                                          | 0.8 | 46        |

| #   | Article                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Highly Nonlinear Dynamics in a Slowly Sedimenting Colloidal Gel. Physical Review Letters, 2011, 106, 118302.                                     | 2.9 | 46        |
| 92  | Does the Adam-Gibbs relation hold in simulated supercooled liquids?. Journal of Chemical Physics, 2019, 151, 084504.                             | 1.2 | 46        |
| 93  | Aging dynamics of the Heisenberg spin glass. Physical Review B, 2004, 69, .                                                                      | 1.1 | 45        |
| 94  | Evidence for a Disordered Critical Point in a Glass-Forming Liquid. Physical Review Letters, 2015, 114, 205701.                                  | 2.9 | 45        |
| 95  | Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles.<br>Europhysics Letters, 2014, 107, 28009.           | 0.7 | 44        |
| 96  | Point-to-set lengths, local structure, and glassiness. Physical Review E, 2016, 94, 032605.                                                      | 0.8 | 43        |
| 97  | Crossovers in the dynamics of supercooled liquids probed by an amorphous wall. Physical Review E, 2014, 89, 052311.                              | 0.8 | 42        |
| 98  | Phase separation in a homogeneous shear flow: Morphology, growth laws, and dynamic scaling.<br>Physical Review E, 2001, 63, 051503.              | 0.8 | 41        |
| 99  | Testing "microscopic―theories of glass-forming liquids. European Physical Journal E, 2011, 34, 96.                                               | 0.7 | 41        |
| 100 | Sound attenuation in stable glasses. Soft Matter, 2019, 15, 7018-7025.                                                                           | 1.2 | 40        |
| 101 | Anomalous structural evolution of soft particles: equibrium liquid state theory. Soft Matter, 2010, 6, 2970.                                     | 1.2 | 39        |
| 102 | Nature of excitations and defects in structural glasses. Nature Communications, 2019, 10, 5102.                                                  | 5.8 | 39        |
| 103 | Density controls the kinetic stability of ultrastable glasses. Europhysics Letters, 2017, 119, 36003.                                            | 0.7 | 38        |
| 104 | Can the glass transition be explained without a growing static length scale?. Journal of Chemical<br>Physics, 2019, 150, 094501.                 | 1.2 | 38        |
| 105 | A random walk description of the heterogeneous glassy dynamics of attracting colloids. Journal of<br>Physics Condensed Matter, 2008, 20, 244126. | 0.7 | 37        |
| 106 | Surfing on a critical line: Rejuvenation without chaos, memory without a hierarchical phase space.<br>Europhysics Letters, 2002, 58, 35-41.      | 0.7 | 36        |
| 107 | Ageing and ultra-slow equilibration in concentrated colloidal hard spheres. Journal of Physics<br>Condensed Matter, 2005, 17, S3543-S3549.       | 0.7 | 36        |
| 108 | Random pinning in glassy spin models with plaquette interactions. Physical Review E, 2012, 85, 021120.                                           | 0.8 | 36        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nature Physics, 2022, 18, 468-472.                                                                   | 6.5 | 36        |
| 110 | Rejuvenation and Memory Effects in a Structural Glass. Physical Review Letters, 2019, 122, 255502.                                                                                    | 2.9 | 35        |
| 111 | Brittle yielding of amorphous solids at finite shear rates. Physical Review Materials, 2020, 4, .                                                                                     | 0.9 | 35        |
| 112 | Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. Physical Review E, 2015, 92, 012309.                                                                 | 0.8 | 34        |
| 113 | Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics. Physical Review Letters, 2001, 87, 087204.                                                               | 2.9 | 33        |
| 114 | Yield stress, heterogeneities and activated processes in soft glassy materials. Journal of Physics<br>Condensed Matter, 2003, 15, S933-S943.                                          | 0.7 | 33        |
| 115 | Marginally stable phases in mean-field structural glasses. Physical Review E, 2019, 99, 012107.                                                                                       | 0.8 | 33        |
| 116 | Static and dynamic length scales in a simple glassy plaquette model. Physical Review E, 2005, 72, 016103.                                                                             | 0.8 | 31        |
| 117 | Equilibrium ultrastable glasses produced by random pinning. Journal of Chemical Physics, 2014, 141, 224503.                                                                           | 1.2 | 31        |
| 118 | Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte Carlo simulations. Journal of Chemical Physics, 2011, 134, 054504. | 1.2 | 30        |
| 119 | Does the configurational entropy of polydisperse particles exist?. Journal of Chemical Physics, 2017, 146, 014502.                                                                    | 1.2 | 30        |
| 120 | Hierarchical Landscape of Hard Disk Glasses. Physical Review X, 2019, 9, .                                                                                                            | 2.8 | 30        |
| 121 | A localization transition underlies the mode-coupling crossover of glasses. SciPost Physics, 2019, 7, .                                                                               | 1.5 | 29        |
| 122 | Temperature cycles in the Heisenberg spin glass. Physical Review B, 2005, 71, .                                                                                                       | 1.1 | 28        |
| 123 | Activated Aging Dynamics and Negative Fluctuation-Dissipation Ratios. Physical Review Letters, 2006, 96, 030602.                                                                      | 2.9 | 28        |
| 124 | Non-equilibrium dynamics of spin facilitated glass models. Journal of Statistical Mechanics: Theory and Experiment, 2007, 2007, P07017-P07017.                                        | 0.9 | 28        |
| 125 | When gel and glass meet: A mechanism for multistep relaxation. Physical Review E, 2010, 81, 040502.                                                                                   | 0.8 | 28        |
| 126 | Discontinuous fluidization transition in time-correlated assemblies of actively deforming particles.<br>Physical Review E, 2017, 96, 050601.                                          | 0.8 | 27        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids.<br>Journal of Chemical Physics, 2016, 144, 024501.                                         | 1.2 | 26        |
| 128 | Configurational entropy of polydisperse supercooled liquids. Journal of Chemical Physics, 2018, 149, 154501.                                                                                     | 1.2 | 26        |
| 129 | Discontinuous shear thickening in Brownian suspensions. Physical Review E, 2018, 98, 012609.                                                                                                     | 0.8 | 26        |
| 130 | Scaling of the glassy dynamics of soft repulsive particles: A mode-coupling approach. Physical Review E, 2010, 81, 031505.                                                                       | 0.8 | 25        |
| 131 | The melting of stable glasses is governed by nucleation-and-growth dynamics. Journal of Chemical Physics, 2016, 144, 244506.                                                                     | 1.2 | 24        |
| 132 | Role of fluctuations in the yielding transition of two-dimensional glasses. Physical Review Research, 2020, 2, .                                                                                 | 1.3 | 24        |
| 133 | Ultra-long-range dynamic correlations in a microscopic model for aging gels. Physical Review E, 2017, 95, 060601.                                                                                | 0.8 | 23        |
| 134 | Low-frequency vibrations of jammed packings in large spatial dimensions. Physical Review E, 2020, 101, 052906.                                                                                   | 0.8 | 23        |
| 135 | Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models. Journal of Physics Condensed Matter, 2005, 17, S3571-S3577.                                         | 0.7 | 22        |
| 136 | Local order and crystallization of dense polydisperse hard spheres. Journal of Physics Condensed<br>Matter, 2018, 30, 144004.                                                                    | 0.7 | 22        |
| 137 | How to "measure―a structural relaxation time that is too long to be measured?. Journal of Chemical Physics, 2020, 153, 044501.                                                                   | 1.2 | 22        |
| 138 | Self-Induced Heterogeneity in Deeply Supercooled Liquids. Physical Review Letters, 2021, 127, 088002.                                                                                            | 2.9 | 22        |
| 139 | Phase Separation in a Chaotic Flow. Physical Review Letters, 2001, 86, 2014-2017.                                                                                                                | 2.9 | 21        |
| 140 | Relaxation dynamics in a transient network fluid with competing gel and glass phases. Journal of<br>Chemical Physics, 2015, 142, 174503.                                                         | 1.2 | 20        |
| 141 | Ultrastable Metallic Glasses <i>InÂSilico</i> . Physical Review Letters, 2020, 125, 085505.                                                                                                      | 2.9 | 20        |
| 142 | Universal Relaxation Dynamics of Sphere Packings below Jamming. Physical Review Letters, 2020, 124,<br>058001.                                                                                   | 2.9 | 20        |
| 143 | Criticality and correlated dynamics at the irreversibility transition in periodically driven colloidal suspensions. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 033501. | 0.9 | 20        |
| 144 | Large-scale structure of randomly jammed spheres. Physical Review E, 2017, 95, 052125.                                                                                                           | 0.8 | 18        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Finite Dimensional Vestige of Spinodal Criticality above the Dynamical Glass Transition. Physical Review Letters, 2020, 125, 108001.                                               | 2.9 | 18        |
| 146 | Comment on "Symmetrical Temperature-Chaos Effect with Positive and Negative Temperature Shifts in<br>a Spin Glass― Physical Review Letters, 2003, 90, 059701; author reply 059702. | 2.9 | 17        |
| 147 | Yield stress in amorphous solids: A mode-coupling-theory analysis. Physical Review E, 2013, 88, 052305.                                                                            | 0.8 | 16        |
| 148 | Dynamic ultrametricity in spin glasses. Physical Review E, 2000, 63, 016105.                                                                                                       | 0.8 | 15        |
| 149 | Spatially heterogeneous dynamics in a model for granular compaction. Physical Review E, 2005, 72, 010301.                                                                          | 0.8 | 15        |
| 150 | Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation. Journal of<br>Statistical Mechanics: Theory and Experiment, 2006, 2006, P12005-P12005.    | 0.9 | 15        |
| 151 | Brambilla <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .                                                                                                              | 2.9 | 15        |
| 152 | Overview of different characterizations of dynamic heterogeneity. , 2011, , 68-109.                                                                                                |     | 15        |
| 153 | Front-Mediated Melting of Isotropic Ultrastable Glasses. Physical Review Letters, 2019, 123, 175501.                                                                               | 2.9 | 15        |
| 154 | Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions. Physical Review E, 2019, 99, 031301.                                                                     | 0.8 | 15        |
| 155 | Reply to "Comment on â€~Fluctuation-dissipation relations in the nonequilibrium critical dynamics of<br>Ising models' ― Physical Review E, 2004, 70, .                             | 0.8 | 14        |
| 156 | Reply to "Characterizing dynamic length scales in glass-forming liquids". Nature Physics, 2012, 8,<br>697-697.                                                                     | 6.5 | 14        |
| 157 | Relaxation Dynamics of Non-Brownian Spheres Below Jamming. Journal of Statistical Physics, 2021, 182,<br>1.                                                                        | 0.5 | 14        |
| 158 | Excess wings and asymmetric relaxation spectra in a facilitated trap model. Journal of Chemical Physics, 2021, 155, 064505.                                                        | 1.2 | 14        |
| 159 | Relaxation Dynamics in the Energy Landscape of Glass-Forming Liquids. Physical Review X, 2022, 12, .                                                                               | 2.8 | 14        |
| 160 | Sub-aging in a domain growth model. European Physical Journal B, 2000, 17, 689-692.                                                                                                | 0.6 | 12        |
| 161 | Brambilla <i>et al.</i> Reply:. Physical Review Letters, 2010, 105, .                                                                                                              | 2.9 | 12        |
| 162 | Random-field Ising model criticality in a glass-forming liquid. Physical Review E, 2020, 102, 042129.                                                                              | 0.8 | 12        |

4

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Spatial Correlations in Glass-Forming Liquids Across The Mode-Coupling Crossover. Physics Procedia, 2012, 34, 70-79.                                              | 1.2 | 11        |
| 164 | Multiple symmetry sustaining phase transitions in spin ice. Physical Review B, 2019, 99, .                                                                        | 1.1 | 11        |
| 165 | Analogies between growing dense active matter and soft driven glasses. Physical Review Research, 2020, 2, .                                                       | 1.3 | 11        |
| 166 | Time and length scales in spin glasses. Journal of Physics Condensed Matter, 2004, 16, S729-S734.                                                                 | 0.7 | 10        |
| 167 | An efficient scheme for sampling fast dynamics at a low average data acquisition rate. Journal of<br>Physics Condensed Matter, 2016, 28, 075201.                  | 0.7 | 10        |
| 168 | Statistical mechanics of coupled supercooled liquids in finite dimensions. SciPost Physics, 2022, 12, .                                                           | 1.5 | 10        |
| 169 | Dynamic heterogeneity in the Glauber–Ising chain. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P05002.                                    | 0.9 | 9         |
| 170 | Stable glassy configurations of the Kob–Andersen model using swap Monte Carlo. Journal of<br>Chemical Physics, 2020, 153, 134505.                                 | 1.2 | 9         |
| 171 | On the overlap between configurations in glassy liquids. Journal of Chemical Physics, 2020, 153, 224502.                                                          | 1.2 | 9         |
| 172 | A Statistical Mechanics PerspectiveÂon Glasses and Aging. , 2021, , 1-68.                                                                                         |     | 8         |
| 173 | Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope. Journal of<br>Chemical Physics, 2022, 156, .                                 | 1.2 | 8         |
| 174 | Coriolis force in geophysics: an elementary introduction and examples. European Journal of Physics, 2000, 21, 359-366.                                            | 0.3 | 7         |
| 175 | Structure and dynamics of coupled viscous liquids. Molecular Physics, 2015, 113, 2707-2715.                                                                       | 0.8 | 7         |
| 176 | Energetics of clusters in the two-dimensional Gaussian Ising spin glass. Journal of Physics A, 2003, 36, 10835-10846.                                             | 1.6 | 6         |
| 177 | Static and dynamic properties of a reversible gel. , 2009, , .                                                                                                    |     | 6         |
| 178 | Glassy Behavior of Sticky Spheres: What Lies beyond Experimental Timescales?. Physical Review Letters, 2020, 125, 258004.                                         | 2.9 | 6         |
| 179 | Can the jamming transition be described using equilibrium statistical mechanics?. Journal of<br>Statistical Mechanics: Theory and Experiment, 2011, 2011, P01004. | 0.9 | 5         |
|     |                                                                                                                                                                   |     |           |

180 Glasses and Aging, A Statistical Mechanics Perspective on. , 2022, , 229-296.

| #   | Article                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Collective dynamics in a glass-former with Mari–Kurchan interactions. Journal of Chemical Physics, 2022, 156, .                                   | 1.2 | 4         |
| 182 | Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Physical<br>Review Research, 2022, 4, .                  | 1.3 | 4         |
| 183 | A few bubbles in a glass. , 2004, , .                                                                                                             |     | 2         |
| 184 | Comment on "Constant Stress and Pressure Rheology of Colloidal Suspensions― Physical Review<br>Letters, 2016, 116, 179801.                        | 2.9 | 2         |
| 185 | A consequence of local equilibration and heterogeneity in glassy materials. Journal of Physics A, 2003, 36, 10667-10681.                          | 1.6 | 1         |
| 186 | On the relaxation dynamics of glass-forming systems: Insights from computer simulations. , 2009, , .                                              |     | 1         |
| 187 | Note: Physical mechanisms for the bulk melting of stable glasses. Journal of Chemical Physics, 2016, 145, 076101.                                 | 1.2 | 1         |
| 188 | Violation of the fluctuation-dissipation theorem and effective temperatures in spin ice. Physical Review B, 2022, 105, .                          | 1.1 | 1         |
| 189 | Course 13 The slow dynamics of glassy materials: Insights from computer simulations. Les Houches<br>Summer School Proceedings, 2007, 85, 473-482. | 0.2 | 0         |
| 190 | À la recherche du verre idéal. Pourlascience Fr, 2022, N° 534 – avril, 64-71.                                                                     | 0.0 | 0         |