
Patricia ConcepciÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8166496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance. Journal of Catalysis, 2022, 408, 388-400.	6.2	12
2	Water Formation Reaction under Interfacial Confinement: Al0.25Si0.75O2 on O-Ru(0001). Nanomaterials, 2022, 12, 183.	4.1	2
3	Cu-Ga3+-doped wurtzite ZnO interface as driving force for enhanced methanol production in co-precipitated Cu/ZnO/Ga2O3 catalysts. Journal of Catalysis, 2022, 407, 149-161.	6.2	15
4	Enhanced Methanol Production over Non-promoted Cu–MgO–Al ₂ O ₃ Materials with Ex-solved 2 nm Cu Particles: Insights from an Operando Spectroscopic Study. ACS Catalysis, 2022, 12, 3845-3857.	11.2	14
5	Active and Regioselective Ru Single-Site Heterogeneous Catalysts for Alpha-Olefin Hydroformylation. ACS Catalysis, 2022, 12, 4182-4193.	11.2	17
6	Selective Conversion of HMF into 3â€Hydroxymethylcyclopentylamine through a Oneâ€Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. ChemSusChem, 2022, 15, .	6.8	5
7	Visible and NIR Light Assistance of the N ₂ Reduction to NH ₃ Catalyzed by Cs-promoted Ru Nanoparticles Supported on Strontium Titanate. ACS Catalysis, 2022, 12, 4938-4946.	11.2	11
8	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
9	Te-doped MoV-Oxide (M1 phase) for ethane ODH. The role of tellurium on morphology, thermal stability and catalytic behaviour. Applied Catalysis A: General, 2022, 643, 118780.	4.3	4
10	Arene borylation through C H activation using Cu3(BTC)2 as heterogeneous catalyst. Catalysis Today, 2021, 366, 212-217.	4.4	6
11	Controlling the selectivity of bimetallic platinum–ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition. Catalysis Science and Technology, 2021, 11, 494-505.	4.1	13
12	Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catalysis Science and Technology, 2021, 11, 3353-3363.	4.1	12
13	Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928.	6.7	8
14	Design of Cobalt Fischer–Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. ACS Catalysis, 2021, 11, 4784-4798.	11.2	46
15	Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions. ACS Applied Materials & Interfaces, 2021, 13, 31021-31030.	8.0	20
16	<i>In-Situ</i> -Generated Active Hf-hydride in Zeolites for the Tandem N-Alkylation of Amines with Benzyl Alcohol. ACS Catalysis, 2021, 11, 8049-8061.	11.2	29
17	Tuning the Catalytic Performance of Cobalt Nanoparticles by Tungsten Doping for Efficient and Selective Hydrogenation of Quinolines under Mild Conditions. ACS Catalysis, 2021, 11, 8197-8210.	11.2	46
18	Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science, 2021, 85, 100905.	31.2	134

PATRICIA CONCEPCIÃ³N

#	Article	IF	CITATIONS
19	Combined Spectroscopic and Computational Study of Nitrobenzene Activation on Non-Noble Metals-Based Mono- and Bimetallic Catalysts. Nanomaterials, 2021, 11, 2037.	4.1	5
20	Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50, 4564-4605.	38.1	119
21	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie - International Edition, 2020, 59, 5806-5815.	13.8	76
22	Ligand-Functionalization-Controlled Activity of Metal–Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. Nano Letters, 2020, 20, 426-432.	9.1	30
23	MIL-101(Fe) as an active heterogeneous solid acid catalyst for the regioselective ring opening of epoxides by indoles. Molecular Catalysis, 2020, 482, 110628.	2.0	9
24	Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine. Catalysis Science and Technology, 2020, 10, 8049-8063.	4.1	11
25	Influence of the ZrO2 Crystalline Phases on the Nature of Active Sites in PdCu/ZrO2 Catalysts for the Methanol Steam Reforming Reaction—An In Situ Spectroscopic Study. Catalysts, 2020, 10, 1005.	3.5	10
26	The nature of active Ni sites and the role of Al species in the oligomerization of ethylene on mesoporous Ni-Al-MCM-41 catalysts. Applied Catalysis A: General, 2020, 608, 117831.	4.3	12
27	Theoretical and Spectroscopic Evidence of the Dynamic Nature of Copper Active Sites in Cu-CHA Catalysts under Selective Catalytic Reduction (NH ₃ –SCR–NO _{<i>x</i>}) Conditions. Journal of Physical Chemistry Letters, 2020, 11, 10060-10066.	4.6	27
28	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	13.7	75
29	Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. Journal of Catalysis, 2020, 391, 11-24.	6.2	30
30	Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3, 628-638.	34.4	182
31	Regioselective Generation of Single‣ite Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite. Angewandte Chemie - International Edition, 2020, 59, 15695-15702.	13.8	46
32	Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. Journal of Catalysis, 2020, 389, 706-713.	6.2	20
33	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie, 2020, 132, 5855-5864.	2.0	21
34	Influence of oxophilic behavior of UiOâ€66(Ce) metal–organic framework with superior catalytic performance in Friedel rafts alkylation reaction. Applied Organometallic Chemistry, 2020, 34, e5578.	3.5	20
35	Insights into the Promotion with Ru of Co/TiO ₂ Fischer–Tropsch Catalysts: An In Situ Spectroscopic Study. ACS Catalysis, 2020, 10, 6042-6057.	11.2	39
36	Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide. Journal of Catalysis, 2020, 385, 160-175.	6.2	34

Patricia ConcepciÃ³N

#	Article	IF	CITATIONS
37	Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone. Green Chemistry, 2019, 21, 4769-4785.	9.0	17
38	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 11731-11736.	13.8	17
39	Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 2019, 18, 866-873.	27.5	339
40	Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites?. ACS Catalysis, 2019, 9, 10626-10639.	11.2	197
41	Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO ₂ Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis, 2019, 9, 10409-10417.	11.2	40
42	New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 1095-1149.	38.1	330
43	A study of the oxidehydration of 1,2-propanediol to propanoic acid with bifunctional catalysts. Applied Catalysis A: General, 2019, 582, 117102.	4.3	7
44	Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 6243-6250.	6.7	56
45	Dynamic Structure and Subsurface Oxygen Formation of a Working Copper Catalyst under Methanol Steam Reforming Conditions: An <i>in Situ</i> Time-Resolved Spectroscopic Study. ACS Catalysis, 2019, 9, 2922-2930.	11.2	17
46	Spectroscopic Evidence and Density Functional Theory (DFT) Analysis of Low-Temperature Oxidation of Cu ⁺ to Cu ²⁺ NO _{<i>x</i>} in Cu-CHA Catalysts: Implications for the SCR-NO _{<i>x</i>} Reaction Mechanism. ACS Catalysis, 2019, 9, 2725-2738.	11.2	55
47	Low-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters. ACS Catalysis, 2019, 9, 11530-11541.	11.2	70
48	Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO ₂ to Methane. Journal of the American Chemical Society, 2019, 141, 19304-19311.	13.7	86
49	Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. Journal of Catalysis, 2019, 369, 312-323.	6.2	43
50	Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 2018, 140, 3215-3218.	13.7	39
51	Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 2018, 9, 574.	12.8	140
52	Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 2018, 235, 186-196.	20.2	101
53	Nature of Active Nickel Sites and Initiation Mechanism for Ethylene Oligomerization on Heterogeneous Ni-beta Catalysts. ACS Catalysis, 2018, 8, 3903-3912.	11.2	102
54	Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry, 2018, 2018, 4867-4874.	2.0	24

#	Article	IF	CITATIONS
55	Influence of Terephthalic Acid Substituents on the Catalytic Activity of MILâ€101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 2017, 9, 2506-2511.	3.7	44
56	Enhanced Stability of Cu Clusters of Low Atomicity against Oxidation. Effect on the Catalytic Redox Process. ACS Catalysis, 2017, 7, 3560-3568.	11.2	58
57	The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer-Tropsch synthesis of Co-Ru/TiO2-anatase catalysts. Catalysis Today, 2017, 296, 170-180.	4.4	25
58	A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 2017, 350, 218-225.	6.2	95
59	Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science and Technology, 2017, 7, 2445-2449.	4.1	9
60	Combined theoretical and spectroscopic mechanistic studies for improving activity and selectivity in heterogeneous catalysis. Catalysis Today, 2017, 285, 166-178.	4.4	11
61	Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study. Topics in Catalysis, 2017, 60, 1653-1663.	2.8	19
62	Self-Organized Transformation from Hexagonal to Orthorhombic Bronze of Cs–Nb–W–O Mixed Oxides Prepared Hydrothermally. Crystal Growth and Design, 2017, 17, 6320-6331.	3.0	5
63	Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry and Engineering, 2017, 5, 9818-9825.	6.7	61
64	Oneâ€Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 2017, 10, 119-128.	6.8	55
65	Generation of subnanometric platinum with high stability during transformation of a 2D zeolite intoÂ3D. Nature Materials, 2017, 16, 132-138.	27.5	505
66	TiO 2 polymorph dependent SMSI effect in Co-Ru/TiO 2 catalysts and its relevance to Fischer-Tropsch synthesis. Catalysis Today, 2017, 289, 181-191.	4.4	45
67	Structure–Reactivity Correlations in Vanadium ontaining Catalysts for Oneâ€Pot Glycerol Oxidehydration to Acrylic Acid. ChemSusChem, 2017, 10, 234-244.	6.8	30
68	Inâ€Situ Generation of Active Molybdenum Octahedral Clusters for Photocatalytic Hydrogen Production from Water. ChemSusChem, 2016, 9, 1963-1971.	6.8	38
69	Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 2016, 340, 1-9.	6.2	181
70	A heterogeneous mechanism for the catalytic decomposition of hydroperoxides and oxidation of alkanes over CeO2 nanoparticles: A combined theoretical and experimental study. Journal of Catalysis, 2016, 344, 334-345.	6.2	13
71	Nanocrystalline CeO ₂ as a Highly Active and Selective Catalyst for the Dehydration of Aldoximes to Nitriles and One-Pot Synthesis of Amides and Esters. ACS Catalysis, 2016, 6, 4564-4575.	11.2	32
72	Facile Synthesis of Surface-Clean Monodispersed CuOx Nanoparticles and Their Catalytic Properties for Oxidative Coupling of Alkynes. ACS Catalysis, 2016, 6, 2211-2221.	11.2	38

#	Article	IF	CITATIONS
73	Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: The influence of support properties on nickel speciation and catalytic performance. Catalysis Today, 2016, 277, 78-88.	4.4	72
74	Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chemical Communications, 2016, 52, 2725-2728.	4.1	30
75	A promoting effect of dilution of Pd sites due to gold surface segregation under reaction conditions on supported Pd–Au catalysts for the selective hydrogenation of 1,5-cyclooctadiene. Catalysis Today, 2016, 259, 213-221.	4.4	24
76	MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 2016, 18, 508-515.	9.0	128
77	Copper―and Vanadiumâ€Catalyzed Oxidative Cleavage of Lignin using Dioxygen. ChemSusChem, 2015, 8, 2106-2113.	6.8	124
78	Postsynthesisâ€Treated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	6.8	19
79	Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 2015, 8, 398-406.	6.8	44
80	Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 2015, 5, 3323-3335.	11.2	91
81	Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C–N, C–C, C–O, C–S, and C–P Bond-Forming Reactions. Journal of the American Chemical Society, 2015, 137, 3894-3900.	13.7	71
82	Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 2015, 5, 5812-5821.	11.2	99
83	Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by "one-pot―processes. Journal of Catalysis, 2014, 314, 73-82.	6.2	106
84	Gold–Copper Nanoalloys Supported on TiO ₂ as Photocatalysts for CO ₂ Reduction by Water. Journal of the American Chemical Society, 2014, 136, 15969-15976.	13.7	526
85	Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2014, 57, 1248-1255.	2.8	40
86	Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3. Journal of Catalysis, 2014, 309, 477-490.	6.2	119
87	Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5, 775-781.	13.6	394
88	Silica supported copper and cerium oxide catalysts for ethyl acetate oxidation. Journal of Colloid and Interface Science, 2013, 404, 155-160.	9.4	20
89	Doped Graphene as a Metalâ€Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 2013, 19, 7547-7554.	3.3	138
90	Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics, 2013, 15, 14670.	2.8	117

Patricia ConcepciÃ³N

#	Article	IF	CITATIONS
91	Migration of Cu lons in SAPO-34 and Its Impact on Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Catalysis, 2013, 3, 2158-2161.	11.2	80
92	The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Physical Chemistry Chemical Physics, 2013, 15, 12048.	2.8	32
93	New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Applied Catalysis A: General, 2013, 467, 509-518.	4.3	123
94	Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180, 156-161.	4.4	20
95	Two alternative routes for 1,2-cyclohexanediol synthesis by means of green processes: Cyclohexene dihydroxylation and catechol hydrogenation. Applied Catalysis A: General, 2013, 466, 21-31.	4.3	24
96	The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Fischer–Tropsch catalysts. Journal of Catalysis, 2013, 302, 37-48.	6.2	69
97	Aerobic Oxidation of Sulfides to Sulfoxides Catalyzed by Gold/Manganese Oxides. Bulletin of the Chemical Society of Japan, 2013, 86, 1412-1418.	3.2	11
98	Making C–C Bonds with Gold: Identification of Selective Gold Sites for Homo- and Cross-Coupling Reactions between Iodobenzene and Alkynes. Journal of Physical Chemistry C, 2012, 116, 24855-24867.	3.1	65
99	Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 2012, 197, 58-65.	4.4	79
100	Reconstruction of the carbon sp ² network in graphene oxide by low-temperature reaction with CO. Journal of Materials Chemistry, 2012, 22, 51-56.	6.7	26
101	Aerobic epoxidation of propene over silver (111) and (100) facet catalysts. Journal of Catalysis, 2012, 292, 138-147.	6.2	56
102	Oxidative dehydrogenation of ethane over NiO–CeO2 mixed oxides catalysts. Catalysis Today, 2012, 180, 51-58.	4.4	136
103	Shape-dependent catalytic activity of palladium nanoparticles embedded in SiO2 and TiO2. Catalysis Today, 2012, 180, 59-67.	4.4	23
104	Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today, 2012, 7, 21-28.	11.9	120
105	Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. Journal of the American Chemical Society, 2011, 133, 10251-10261.	13.7	87
106	Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 2011, 12, 1018-1021.	3.3	44
107	New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas. Journal of Catalysis, 2011, 280, 274-288.	6.2	64
108	Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 2010, 269, 140-149.	6.2	337

PATRICIA CONCEPCIÃ³N

#	Article	IF	CITATIONS
109	Gold atalyzed Phosgeneâ€Free Synthesis of Polyurethane Precursors. Angewandte Chemie - International Edition, 2010, 49, 1286-1290.	13.8	62
110	Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 2010, 158, 162-169.	4.4	18
111	Heterolytic and heterotopic dissociation of hydrogen on ceria-supported gold nanoparticles. Combined inelastic neutron scattering and FT-IR spectroscopic study on the nature and reactivity of surface hydrogen species. Chemical Science, 2010, 1, 731.	7.4	99
112	Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. Journal of Catalysis, 2009, 265, 19-25.	6.2	170
113	Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis, 2009, 266, 129-144.	6.2	342
114	Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis. Physical Chemistry Chemical Physics, 2009, 11, 2876.	2.8	81
115	Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 2008, 130, 8748-8753.	13.7	496
116	A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO ₂ Catalysts:  A Cooperative Effect between Gold and the Support. Journal of the American Chemical Society, 2007, 129, 16230-16237.	13.7	458
117	A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie - International Edition, 2007, 46, 7266-7269.	13.8	511
118	Cover Picture: A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts (Angew. Chem. Int. Ed. 38/2007). Angewandte Chemie - International Edition, 2007, 46, 7133-7133.	13.8	3
119	Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. Journal of Catalysis, 2007, 251, 39-47.	6.2	138
120	Peculiarities of Sn-Beta and potential industrial applications. Catalysis Today, 2007, 121, 39-44.	4.4	58
121	Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. Applied Catalysis A: General, 2006, 307, 42-45.	4.3	88
122	Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 2005, 234, 111-118.	6.2	280
123	A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie - International Edition, 2005, 44, 4066-4069.	13.8	1,017
124	Anionic Organic Guests Incorporated in Zeolites: Adsorption and Reactivity of a Meisenheimer Complex in Faujasites. Chemistry - A European Journal, 2005, 11, 6491-6502.	3.3	5
125	Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction. Journal of Catalysis, 2004, 228, 321-332.	6.2	94
126	Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angewandte Chemie - International Edition, 2004, 43, 2538-2540.	13.8	811

#	Article	IF	CITATIONS
127	Preparation, characterization and reactivity of V- and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials, 2004, 67, 215-227.	4.4	30
128	The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts. Applied Catalysis A: General, 2004, 267, 111-119.	4.3	89
129	Chemoselective Hydrogenation Catalysts:Â Pt on Mesostructured CeO2Nanoparticles Embedded within Ultrathin Layers of SiO2Binder. Journal of the American Chemical Society, 2004, 126, 5523-5532.	13.7	154
130	Novel synthesis of a vanadium–cobalt aluminophosphate molecular sieve of AEI structure (VCoAPO-18) and its catalytic behaviour for the ethane oxidation. Catalysis Communications, 2001, 2, 363-367.	3.3	11
131	Magnetic resonance studies on V-containing, and V,Mg-containing AFI aluminophosphates. Microporous and Mesoporous Materials, 2000, 39, 219-228.	4.4	28
132	Low-Temperature CO Adsorption on V-Containing Aluminophosphates: An FTIR Study. Journal of Catalysis, 1999, 184, 172-179.	6.2	24
133	Oxidative Dehydrogenation of Ethane on Vanadium-Containing Aluminophosphates with AFI Structure. Collection of Czechoslovak Chemical Communications, 1998, 63, 1869-1883.	1.0	7
134	Application of Infrared Spectroscopy in Catalysis: Impacts on Catalysts' Selectivity. , 0, , .		3