
Tomasz Cierpicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8166371/publications.pdf Version: 2024-02-01

TOMASZ CIEDDICKI

#	Article	IF	CITATIONS
1	Chemical validation of a druggable site on Hsp27/HSPB1 using in silico solvent mapping and biophysical methods. Bioorganic and Medicinal Chemistry, 2021, 34, 115990.	1.4	1
2	Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nature Communications, 2021, 12, 2792.	5.8	17
3	Genome-scale CRISPR-Cas9 screen of Wnt/ \hat{l}^2 -catenin signaling identifies therapeutic targets for colorectal cancer. Science Advances, 2021, 7, .	4.7	28
4	Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nature Chemical Biology, 2021, 17, 784-793.	3.9	31
5	Development of potent dimeric inhibitors of GAS41 YEATS domain. Cell Chemical Biology, 2021, 28, 1716-1727.e6.	2.5	10
6	Unexpected specificity within dynamic transcriptional protein–protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27346-27353.	3.3	30
7	Combinatorial treatment with menin and FLT3 inhibitors induces complete remission in AML models with activating FLT3 mutations. Blood, 2020, 136, 2958-2963.	0.6	20
8	Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction. European Journal of Medicinal Chemistry, 2020, 207, 112748.	2.6	4
9	Covalent inhibition of NSD1 histone methyltransferase. Nature Chemical Biology, 2020, 16, 1403-1410.	3.9	52
10	Targeting epigenetic protein–protein interactions with small-molecule inhibitors. Future Medicinal Chemistry, 2020, 12, 1305-1326.	1.1	12
11	Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. Journal of Clinical Investigation, 2020, 130, 981-997.	3.9	146
12	Combined MAPK Pathway and HDAC Inhibition Breaks Melanoma. Cancer Discovery, 2019, 9, 469-471.	7.7	27
13	Changing the Apoptosis Pathway through Evolutionary Protein Design. Journal of Molecular Biology, 2019, 431, 825-841.	2.0	16
14	Pharmacologic Inhibition of the Menin–MLL Interaction Leads to Transcriptional Repression of <i>PEG10</i> and Blocks Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2018, 17, 26-38.	1.9	40
15	Validation of approximate nonempirical scoring model for menin-mixed lineage leukemia inhibitors. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	2
16	Identification of Thiourea-Based Inhibitors of the B-Cell Lymphoma 6 BTB Domain via NMR-Based Fragment Screening and Computer-Aided Drug Design. Journal of Medicinal Chemistry, 2018, 61, 7573-7588.	2.9	35
17	GAS41 Recognizes Diacetylated Histone H3 through a Bivalent Binding Mode. ACS Chemical Biology, 2018, 13, 2739-2746.	1.6	29
18	Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development. Blood, 2018, 132, 1279-1292.	0.6	17

#	Article	IF	CITATIONS
19	Complexity of Blocking Bivalent Protein–Protein Interactions: Development of a Highly Potent Inhibitor of the Menin–Mixed-Lineage Leukemia Interaction. Journal of Medicinal Chemistry, 2018, 61, 4832-4850.	2.9	45
20	Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8960-8965.	3.3	23
21	Stabilizing the Mixed Lineage Leukemia Protein. New England Journal of Medicine, 2017, 376, 1688-1689.	13.9	3
22	Theoretical models of inhibitory activity for inhibitors of protein–protein interactions: targeting menin–mixed lineage leukemia with small molecules. MedChemComm, 2017, 8, 2216-2227.	3.5	7
23	Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology, 2017, 153, 1555-1567.e15.	0.6	28
24	H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Medicinal Chemistry, 2016, 8, 1589-1607.	1.1	37
25	Design and synthesis of triarylacrylonitrile analogues of tamoxifen with improved binding selectivity to protein kinase C. Bioorganic and Medicinal Chemistry, 2016, 24, 5495-5504.	1.4	13
26	BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nature Communications, 2016, 7, 13343.	5.8	52
27	Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein–Protein Interaction between Menin and Mixed Lineage Leukemia (MLL). Journal of Medicinal Chemistry, 2016, 59, 892-913.	2.9	56
28	Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. Journal of Clinical Investigation, 2016, 126, 3351-3362.	3.9	133
29	The Direct Notch1 Cofactor Zmiz1 Differentially Regulates Notch1 Signals in a Stage-Specific Manner to Preserve Early T-Cell Precursors and Expand Committed T Cells. Blood, 2016, 128, 426-426.	0.6	0
30	Progress towards small molecule menin-mixed lineage leukemia (MLL) interaction inhibitors with in vivo utility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2720-2725.	1.0	10
31	Targeting the MLL complex in castration-resistant prostate cancer. Nature Medicine, 2015, 21, 344-352.	15.2	165
32	Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression of MLL Leukemia InÂVivo. Cancer Cell, 2015, 27, 589-602.	7.7	290
33	The PIAS-like Coactivator Zmiz1 Is a Direct and Selective Cofactor of Notch1 in T Cell Development and Leukemia. Immunity, 2015, 43, 870-883.	6.6	71
34	Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes. Journal of Medicinal Chemistry, 2015, 58, 7465-7474.	2.9	70
35	Two Loops Undergoing Concerted Dynamics Regulate the Activity of the ASH1L Histone Methyltransferase. Biochemistry, 2015, 54, 5401-5413.	1.2	18
36	Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?. Immunological Reviews, 2015, 263, 279-301.	2.8	42

TOMASZ CIERPICKI

#	Article	IF	CITATIONS
37	Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. Journal of Clinical Investigation, 2015, 125, 2007-2020.	3.9	57
38	Challenges and opportunities in targeting the menin–MLL interaction. Future Medicinal Chemistry, 2014, 6, 447-462.	1.1	63
39	The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood, 2014, 124, 3730-3737.	0.6	30
40	Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood, 2012, 120, 4461-4469.	0.6	160
41	Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nature Chemical Biology, 2012, 8, 277-284.	3.9	349
42	Sekikaic Acid and Lobaric Acid Target a Dynamic Interface of the Coactivator CBP/p300. Angewandte Chemie - International Edition, 2012, 51, 11258-11262.	7.2	57
43	Profiling the Dynamic Interfaces of Fluorinated Transcription Complexes for Ligand Discovery and Characterization. ACS Chemical Biology, 2012, 7, 1345-1350.	1.6	57
44	Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein. Journal of Biological Chemistry, 2011, 286, 31742-31748.	1.6	83
45	Targeting Menin-MLL Interaction to Inhibit MLL Fusion Oncoproteins in Leukemia. Blood, 2011, 118, 2497-2497.	0.6	1
46	Targeting LEDGF Interactions in MLL Leukemia. Blood, 2011, 118, 2500-2500.	0.6	0
47	Molecular Basis of the Mixed Lineage Leukemia-Menin Interaction. Journal of Biological Chemistry, 2010, 285, 40690-40698.	1.6	73
48	Molecular Basis of Menin-MLL Interaction: Implication for Targeted Therapies in MLL Leukemias Blood, 2009, 114, 3775-3775.	0.6	2