Daniel Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8166211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of a pentameric ligand-gated ion channel by a semiconserved cationic lipid-binding site. Journal of Biological Chemistry, 2021, 297, 100899.	1.6	15
2	Ligand gated receptor interactions: A key to the power of neuronal networks. Biochemical Pharmacology, 2021, 190, 114653.	2.0	3
3	Pharmacological modulation of GABAA receptors. Current Opinion in Pharmacology, 2021, 59, 3-10.	1.7	14
4	Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. Journal of Medicinal Chemistry, 2020, 63, 6462-6473.	2.9	13
5	Chemogenetics a robust approach to pharmacology and gene therapy. Biochemical Pharmacology, 2020, 175, 113889.	2.0	21
6	A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Current Topics in Behavioral Neurosciences, 2020, 45, 1-28.	0.8	27
7	Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. ELife, 2020, 9, .	2.8	16
8	Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cellular Signalling, 2019, 62, 109338.	1.7	21
9	Micropipette calibration by differential pressure measurements. Measurement Science and Technology, 2019, 30, 105003.	1.4	2
10	Receptor variants and the development of centrally acting medications. Dialogues in Clinical Neuroscience, 2019, 21, 149-157.	1.8	1
11	The wonderland of neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2018, 151, 214-225.	2.0	99
12	Methods for the Discovery of Novel Compounds Modulating a Gamma-Aminobutyric Acid Receptor Type A Neurotransmission. Journal of Visualized Experiments, 2018, , .	0.2	6
13	Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine inÂvitro and improves memory-related task performance in young and aged animals. Neuropharmacology, 2017, 117, 422-433.	2.0	37
14	The solithromycin journey—lt is all in the chemistry. Bioorganic and Medicinal Chemistry, 2016, 24, 6420-6428.	1.4	57
15	GABAA receptor-mediated neurotransmission: Not so simple after all. Biochemical Pharmacology, 2016, 115, 10-17.	2.0	41
16	The nicotinic acetylcholine receptor alpha 4 subunit contains a functionally relevant SNP Haplotype. BMC Genetics, 2015, 16, 46.	2.7	12
17	Concentration-response relationship of the α7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays. Biochemical Pharmacology, 2015, 97, 576-589.	2.0	25
18	Neuronal α7 Nicotinic Receptors as a Target for the Treatment of Schizophrenia. International Review of Neurobiology, 2015, 124, 79-111.	0.9	32

#	Article	IF	CITATIONS
19	Therapeutic Potential of <i>α</i> 7 Nicotinic Acetylcholine Receptors. Pharmacological Reviews, 2015, 67, 1025-1073.	7.1	123
20	Characterization of RO5126946, a Novel <i>α</i> ₇ Nicotinic Acetylcholine Receptor–Positive Allosteric Modulator. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 455-468.	1.3	21
21	Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opinion on Therapeutic Targets, 2013, 17, 139-155.	1.5	72
22	Nicotinic acetylcholine receptors: From basic science to therapeutics. , 2013, 137, 22-54.		435
23	Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochemical Pharmacology, 2013, 85, 1713-1720.	2.0	111
24	Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage. PLoS ONE, 2013, 8, e64828.	1.1	49
25	Mutations in familial nocturnal frontal lobe epilepsy might be associated with distinct neurological phenotypes. Seizure: the Journal of the British Epilepsy Association, 2012, 21, 118-123.	0.9	40
26	EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology, 2012, 62, 1099-1110.	2.0	194
27	α7β2 Nicotinic Acetylcholine Receptors Assemble, Function, and Are Activated Primarily via Their α7-α7 Interfaces. Molecular Pharmacology, 2012, 81, 175-188.	1.0	56
28	Molecular actions of smoking cessation drugs at α4β2 nicotinic receptors defined in crystal structures of a homologous binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9173-9178.	3.3	65
29	The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function. Biochemical Pharmacology, 2011, 82, 904-914.	2.0	109
30	Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors. Bioorganic and Medicinal Chemistry, 2011, 19, 6107-6119.	1.4	29
31	RG3487, a Novel Nicotinic α7 Receptor Partial Agonist, Improves Cognition and Sensorimotor Gating in Rodents. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 242-253.	1.3	112
32	Exploring α7-Nicotinic Receptor Ligand Diversity by Scaffold Enumeration from the Chemical Universe Database GDB. ACS Medicinal Chemistry Letters, 2010, 1, 422-426.	1.3	27
33	Nicotinic receptor channelopathies and epilepsy. Pflugers Archiv European Journal of Physiology, 2010, 460, 495-503.	1.3	55
34	Molecular Characterization of Off-Target Activities of Telithromycin: a Potential Role for Nicotinic Acetylcholine Receptors. Antimicrobial Agents and Chemotherapy, 2010, 54, 5399-5402.	1.4	69
35	Neurocircuitry of the nicotinic cholinergic system. Dialogues in Clinical Neuroscience, 2010, 12, 463-470.	1.8	11
36	Pleiotropic functional effects of the first epilepsyâ€associated mutation in the human <i>CHRNA2</i> gene. FEBS Letters, 2009, 583, 1599-1604.	1.3	29

#	Article	IF	CITATIONS
37	Local and global calcium signals associated with the opening of neuronal α7 nicotinic acetylcholine receptors. Cell Calcium, 2009, 45, 198-207.	1.1	29
38	Use of Acetylcholine Binding Protein in the Search for Novel α7 Nicotinic Receptor Ligands. In Silico Docking, Pharmacological Screening, and X-ray Analysis. Journal of Medicinal Chemistry, 2009, 52, 2372-2383.	2.9	78
39	An automated system for intracellular and intranuclear injection. Journal of Neuroscience Methods, 2008, 169, 65-75.	1.3	59
40	Neurotoxins acting at nicotinic receptors. Future Neurology, 2008, 3, 463-472.	0.9	0
41	[3H]A-585539 [(1S,4S)-2,2-Dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane], a Novel High-Affinity α7 Neuronal Nicotinic Receptor Agonist: Radioligand Binding Characterization to Rat and Human Brain. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 179-187.	1.3	61
42	Positive Allosteric Modulation of the α7 Nicotinic Acetylcholine Receptor: Ligand Interactions with Distinct Binding Sites and Evidence for a Prominent Role of the M2-M3 Segment. Molecular Pharmacology, 2008, 74, 1407-1416.	1.0	102
43	A major role of the nicotinic acetylcholine receptor gene CHRNA2 in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is unlikely. Neuroscience Letters, 2007, 422, 74-76.	1.0	21
44	Allosteric modulation of nicotinic acetylcholine receptors. Biochemical Pharmacology, 2007, 74, 1155-1163.	2.0	236
45	Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annual Review of Pharmacology and Toxicology, 2007, 47, 699-729.	4.2	1,072
46	Acetylcholine-Binding Proteins: Functional and Structural Homologs of Nicotinic Acetylcholine Receptors. Journal of Molecular Neuroscience, 2006, 30, 9-10.	1.1	21
47	Â7 Neuronal Nicotinic Acetylcholine Receptors Are Negatively Regulated by Tyrosine Phosphorylation and Src-Family Kinases. Journal of Neuroscience, 2005, 25, 9836-9849.	1.7	137
48	A Novel Positive Allosteric Modulator of the Â7 Neuronal Nicotinic Acetylcholine Receptor: In Vitro and In Vivo Characterization. Journal of Neuroscience, 2005, 25, 4396-4405.	1.7	436
49	The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiology of Disease, 2005, 20, 799-804.	2.1	96
50	The possible contribution of neuronal nicotinic acetylcholine receptors in depression. Dialogues in Clinical Neuroscience, 2005, 7, 207-216.	1.8	23
51	Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience, 2004, 124, 405-420.	1.1	183
52	Overview of Electrophysiological Characterization of Neuronal Nicotinic Acetylcholine Receptors. , 2004, Chapter 11, Unit11.7.		3
53	Nicotinic acetylcholine receptors: from structure to brain function. , 2003, 147, 1-46.		409
54	Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Human Molecular Genetics, 2003, 12, 3017-3024.	1.4	230

#	Article	IF	CITATIONS
55	Potentiation of Human α4β2 Neuronal Nicotinic Acetylcholine Receptor by Estradiol. Molecular Pharmacology, 2002, 61, 127-135.	1.0	87
56	Neuronal Nicotinic Acetylcholine Receptors from Drosophila. Journal of Neurochemistry, 2002, 74, 2537-2546.	2.1	46
57	Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE. Neurophysiologie Clinique, 2002, 32, 99-107.	1.0	34
58	Expression of an α7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology, 2002, 126, 86-98.	1.1	84
59	Neuronal Nicotinic Acetylcholine Receptors and Epilepsy. Epilepsy Currents, 2002, 2, 191-193.	0.4	20
60	CHRNB2 Is the Second Acetylcholine Receptor Subunit Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy*. American Journal of Human Genetics, 2001, 68, 225-231.	2.6	300
61	Neurotoxicity of channel mutations in heterologously expressed α7-nicotinic acetylcholine receptors. European Journal of Neuroscience, 2001, 13, 1849-1860.	1.2	24
62	Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. Journal of Physiology, 1999, 515, 769-776.	1.3	141
63	Mutated Nicotinic Receptors Responsible for Autosomal Dominant Nocturnal Frontal Lobe Epilepsy are More Sensitive to Carbamazepine. Epilepsia, 1999, 40, 1198-1209.	2.6	126
64	The Long Cytoplasmic Loop of the a3 Subunit Targets Specific nAChR Subtypes to Synapses on Neurons in Vivo. Annals of the New York Academy of Sciences, 1999, 868, 640-644.	1.8	6
65	No evidence for linkage between schizophrenia and markers at chromosome 15q13-14. , 1999, 88, 109-112.		59
66	Synthesis and Electrophysiological Studies of a Novel Epibatidine Analogue. Journal of Receptor and Signal Transduction Research, 1999, 19, 521-531.	1.3	7
67	Localization of mRNA for CHRNA7 in human fetal brain. NeuroReport, 1999, 10, 2223-7.	0.6	24
68	The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nature Neuroscience, 1998, 1, 557-562.	7.1	130
69	Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. British Journal of Pharmacology, 1998, 125, 751-760.	2.7	119
70	lvermectin: A Positive Allosteric Effector of the α7 Neuronal Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 1998, 53, 283-294.	1.0	294
71	Open-Channel Blockers at the Human α4β2 Neuronal Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 1998, 53, 555-563.	1.0	175
72	Minireview: Electrophysiology: A Method to Investigate the Functional Properties of Ligand-Gated Channels. Journal of Receptor and Signal Transduction Research, 1997, 17, 227-242.	1.3	14

#	Article	IF	CITATIONS
73	An Insertion Mutation of the CHRNA4 Gene in a Family With Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. Human Molecular Genetics, 1997, 6, 943-947.	1.4	381
74	Human α4β2 Neuronal Nicotinic Acetylcholine Receptor in HEK 293 Cells: A Patch-Clamp Study. Journal of Neuroscience, 1996, 16, 7880-7891.	1.7	178
75	Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. European Journal of Pharmacology, 1995, 290, 237-246.	2.7	157
76	Inward rectification of neuronal nicotinic acetylcholine receptors investigated by using the homomeric α7 receptor. Proceedings of the Royal Society B: Biological Sciences, 1995, 260, 139-148.	1.2	37
77	Functional expression of nicotinic acetylcholine receptors containing rat α7 subunits in human SH-SY5Y neuroblastoma cells. FEBS Letters, 1994, 354, 155-159.	1.3	96
78	Chimaeric nicotinic–serotonergic receptor combines distinct ligand binding and channel specificities. Nature, 1993, 366, 479-483.	13.7	399
79	Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6971-6975.	3.3	354
80	Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1261-1265.	3.3	229
81	Methyl lycaconitine: A novel nicotinic antagonist. Molecular and Cellular Neurosciences, 1992, 3, 237-243.	1.0	73
82	Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature, 1992, 359, 500-505.	13.7	406
83	Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Letters, 1991, 294, 198-202.	1.3	147
84	Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature, 1991, 353, 846-849.	13.7	498
85	A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron, 1990, 5, 847-856.	3.8	910
86	Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in xenopus oocytes after cDNA injection. Neuron, 1988, 1, 847-852.	3.8	133