Anna Trybala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8166031/publications.pdf

Version: 2024-02-01

38	1,026 citations	567144 15 h-index	434063 31
papers	citations	n-maex	g-index
39 all docs	39 docs citations	39 times ranked	1094 citing authors

#	Article	IF	CITATIONS
1	Current applications of foams formed from mixed surfactant–polymer solutions. Advances in Colloid and Interface Science, 2015, 222, 670-677.	7.0	152
2	Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in Colloid and Interface Science, 2021, 288, 102340.	7.0	151
3	Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?. Advances in Colloid and Interface Science, 2014, 210, 65-71.	7.0	147
4	Simultaneous spreading and evaporation: Recent developments. Advances in Colloid and Interface Science, 2014, 206, 382-398.	7.0	90
5	Kinetics of Wetting and Spreading of Droplets over Various Substrates. Langmuir, 2017, 33, 4367-4385.	1.6	55
6	Surfactant-enhanced spreading: Experimental achievements and possible mechanisms. Advances in Colloid and Interface Science, 2016, 233, 155-160.	7.0	46
7	Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 451, 38-47.	2.3	40
8	Foam in pharmaceutical and medical applications. Current Opinion in Colloid and Interface Science, 2019, 44, 153-167.	3.4	39
9	Mixtures of catanionic surfactants can be superspreaders: Comparison with trisiloxane superspreader. Journal of Colloid and Interface Science, 2015, 459, 250-256.	5.0	29
10	Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles. Journal of Colloid and Interface Science, 2013, 403, 49-57.	5.0	26
11	Foam drainage placed on a porous substrate. Soft Matter, 2015, 11, 3643-3652.	1.2	23
12	Biological applications of kinetics of wetting and spreading. Advances in Colloid and Interface Science, 2017, 249, 17-36.	7.0	22
13	Foams built up by non-Newtonian polymeric solutions: Free drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 112-120.	2.3	19
14	Interaction of foam with a porous medium: Theory and calculations. European Physical Journal: Special Topics, 2015, 224, 459-471.	1.2	16
15	Removal of micrometer size particles from surfaces using laser-induced thermocapillary flow: Experimental results. Journal of Colloid and Interface Science, 2016, 473, 120-125.	5.0	16
16	Surfactant Enhanced Spreading: Catanionic Mixture. Colloids and Interface Science Communications, 2014, 1, 1-5.	2.0	13
17	Foam drainage placed on a thin porous layer. Soft Matter, 2019, 15, 5331-5344.	1.2	11
18	Interaction of liquid foams with porous substrates. Current Opinion in Colloid and Interface Science, 2019, 39, 212-219.	3.4	11

#	Article	IF	CITATIONS
19	Kinetics of spreading of synergetic surfactant mixtures in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 23-28.	2.3	10
20	Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates. Colloids and Interfaces, 2019, 3, 53.	0.9	10
21	Wetting and Spreading of Commercially Available Aqueous Surfactants on Porous Materials. Colloids and Interfaces, 2019, 3, 14.	0.9	10
22	Electroosmotic flow measurements in a freely suspended liquid film: Experimhents and numerical simulations. Electrophoresis, 2017, 38, 2554-2560.	1.3	9
23	Drying of Foam under Microgravity Conditions. Microgravity Science and Technology, 2019, 31, 589-601.	0.7	9
24	Kinetics of Spreading over Porous Substrates. Colloids and Interfaces, 2019, 3, 38.	0.9	8
25	Removal of submicron particles from solid surfaces using surfactants. Colloids and Interface Science Communications, 2015, 6, 13-16.	2.0	7
26	Kinetics of spreading wetting of blood over porous substrates. Current Opinion in Colloid and Interface Science, 2018, 36, 84-89.	3.4	7
27	Sessile Droplets on Deformable Substrates. Colloids and Interfaces, 2018, 2, 56.	0.9	6
28	Electroosmotic Flow in Free Liquid Films: Understanding Flow in Foam Plateau Borders. Colloids and Interfaces, 2018, 2, 8.	0.9	6
29	Foamability of soft porous media using compression. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123569.	2.3	6
30	Electrokinetic Transport of a Charged Dye in a Freely Suspended Liquid Film: Experiments and Numerical Simulations. Langmuir, 2020, 36, 1183-1191.	1.6	6
31	Procedures used in electrokinetic investigations of surfactant-laden interfaces, liquid films and foam system. Current Opinion in Colloid and Interface Science, 2018, 37, 128-135.	3.4	5
32	Foam Formation and Interaction with Porous Media. Coatings, 2020, 10, 143.	1.2	5
33	Foam flow through porous media. Current Opinion in Colloid and Interface Science, 2022, 58, 101555.	3.4	5
34	Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields. Langmuir, 2022, 38, 6305-6321.	1.6	4
35	Foam Formation by Compression/Decompression Cycle of Soft Porous Media. Colloids and Interfaces, 2020, 4, 31.	0.9	3
36	Foam Quality of Foams Formed on Capillaries and Porous Media Systems. Colloids and Interfaces, 2021, 5, 10.	0.9	2

Anna Trybala

#	#	Article	lF	CITATIONS
3	37	Formation of Sodium Dodecyl Sulfate Foams by Compression of Soft Porous Material. Journal of Surfactants and Detergents, 2021, 24, 981-989.	1.0	2
3	38	Gelatin hydrogel as a model for assessment of the wettability and water-resistance of polypeptide materials. Colloid Journal, 2015, 77, 321-326.	0.5	0