Hua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8165996/publications.pdf

Version: 2024-02-01

59	2,329	28	47
papers	citations	h-index	g-index
60	60	60	2421
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at $Au(1\ 1\ 1)$ electrode interface. Journal of Colloid and Interface Science, 2022, 606, 1170-1178.	5.0	8
2	Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P6,6,6,14] [AOT]. Journal of Colloid and Interface Science, 2022, 608, 2120-2130.	5.0	8
3	Polycation radius of gyration in a polymeric ionic liquid (PIL): the PIL melt is not a theta solvent. Physical Chemistry Chemical Physics, 2022, 24, 4526-4532.	1.3	5
4	Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. Journal of Colloid and Interface Science, 2022, 616, 121-128.	5.0	13
5	A recipe of surfactant for the flotation of fine cassiterite particles. Minerals Engineering, 2021, 160, 106658.	1.8	20
6	A dendronised polymer architecture breaks the conventional inverse relationship between porosity and mechanical properties of hydrogels. Chemical Communications, 2021, 57, 773-776.	2.2	7
7	pH-Dependent surface charge at the interfaces between aluminum gallium nitride (AlGaN) and aqueous solution revealed by surfactant adsorption. Journal of Colloid and Interface Science, 2021, 583, 331-339.	5.0	4
8	Potential-Dependent Superlubricity of Ionic Liquids on a Graphite Surface. Journal of Physical Chemistry C, 2021, 125, 3940-3947.	1.5	23
9	Electrical Double Layer Structure in Ionic Liquids and Its Importance for Supercapacitor, Battery, Sensing, and Lubrication Applications. Journal of Physical Chemistry C, 2021, 125, 13707-13720.	1.5	56
10	Ambient energy dispersion and long-term stabilisation of large graphene sheets from graphite using a surface energy matched ionic liquidâ€. Journal of Ionic Liquids, 2021, 1, 100001.	1.0	6
11	Effects of surface oxidation on the pH-dependent surface charge of oxidized aluminum gallium nitride. Journal of Colloid and Interface Science, 2021, 603, 604-614.	5.0	3
12	Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. Journal of Colloid and Interface Science, 2020, 563, 347-353.	5.0	16
13	Mechanistic Study on the Removal of NO2 from Flue Gas Using Novel Ethylene Glycol-tetrabutylammonium Bromide Deep Eutectic Solvents. ACS Omega, 2020, 5, 31220-31226.	1.6	5
14	Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nature Materials, 2020, 19, 1096-1101.	13.3	156
15	Robust Hydrophobic Coatings Using Polymer Blends for the Surface Protection of Marble. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124796.	2.3	0
16	Passivation by pyridine-induced Pbl ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	1.7	8
17	Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. Journal of Chemical Physics, 2020, 152, 234504.	1.2	8
18	Effect of Hydrogen Bonding between lons of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 3905-3910.	2.1	18

#	Article	IF	Citations
19	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
20	Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. Journal of Physical Chemistry Letters, 2019, 10, 5331-5337.	2.1	6
21	pH-dependent surface properties of the gallium nitride – Solution interface mapped by surfactant adsorption. Journal of Colloid and Interface Science, 2019, 556, 680-688.	5.0	4
22	Influence of Hydrogen Bonding between lons of Like Charge on the Ionic Liquid Interfacial Structure at a Mica Surface. Journal of Physical Chemistry Letters, 2019, 10, 7368-7373.	2.1	20
23	Nano- and Macroscale Study of the Lubrication of Titania Using Pure and Diluted Ionic Liquids. Frontiers in Chemistry, 2019, 7, 287.	1.8	20
24	Pinewood pyrolysis occurs at lower temperatures following treatment with choline-amino acid ionic liquids. Fuel, 2019, 236, 306-312.	3.4	21
25	Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content. Nanoscale Horizons, 2019, 4, 158-168.	4.1	67
26	Dissolution and suspension of asphaltenes with ionic liquids. Fuel, 2019, 238, 129-138.	3.4	45
27	Mechanistic Study of Selective Absorption of NO in Flue Gas Using EG-TBAB Deep Eutectic Solvents. Environmental Science & Envi	4.6	34
28	Understanding the synergistic lubrication effect of 2-mercaptobenzothiazolate based ionic liquids and Mo nanoparticles as hybrid additives. Tribology International, 2018, 125, 39-45.	3.0	45
29	NO ₂ Solvation Structure in Choline Chloride Deep Eutectic Solventsâ€"The Role of the Hydrogen Bond Donor. Journal of Physical Chemistry B, 2018, 122, 4336-4344.	1.2	36
30	Ionic Liquid Adsorption at the Silica–Oil Interface Revealed by Neutron Reflectometry. Journal of Physical Chemistry C, 2018, 122, 24077-24084.	1.5	16
31	Boundary layer friction of solvate ionic liquids as a function of potential. Faraday Discussions, 2017, 199, 311-322.	1.6	30
32	Ionic Liquid Lubrication of Stainless Steel: Friction is Inversely Correlated with Interfacial Liquid Nanostructure. ACS Sustainable Chemistry and Engineering, 2017, 5, 11737-11743.	3.2	59
33	Nanotribology and voltage-controlled friction: general discussion. Faraday Discussions, 2017, 199, 349-376.	1.6	0
34	Effect of Variation in Anion Type and Glyme Length on the Nanostructure of the Solvate Ionic Liquid/Graphite Interface as a Function of Potential. Journal of Physical Chemistry C, 2017, 121, 15728-15734.	1.5	14
35	Ionic Liquids as Grease Base Liquids. Lubricants, 2017, 5, 31.	1.2	10
36	Nanotribology of Ionic Liquids as Lubricant Additives for Alumina Surfaces. Journal of Physical Chemistry C, 2017, 121, 28348-28353.	1.5	23

#	Article	IF	Citations
37	Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron. Separation and Purification Technology, 2016, 170, 337-343.	3.9	68
38	Influence of Water on the Interfacial Nanostructure and Wetting of [Rmim][NTf2] Ionic Liquids at Mica Surfaces. Langmuir, 2016, 32, 8818-8825.	1.6	39
39	Combined Nano- and Macrotribology Studies of Titania Lubrication Using the Oil-Ionic Liquid Mixtures. ACS Sustainable Chemistry and Engineering, 2016, 4, 5005-5012.	3.2	35
40	Tribotronic control of friction in oil-based lubricants with ionic liquid additives. Physical Chemistry Chemical Physics, 2016, 18, 23657-23662.	1.3	58
41	A comparative AFM study of the interfacial nanostructure in imidazolium or pyrrolidinium ionic liquid electrolytes for zinc electrochemical systems. Physical Chemistry Chemical Physics, 2016, 18, 29337-29347.	1.3	24
42	Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation. Physical Chemistry Chemical Physics, 2016, 18, 6541-6547.	1.3	46
43	Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate–graphite interface. Physical Chemistry Chemical Physics, 2015, 17, 16047-16052.	1.3	21
44	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO $<$ sub $>$ 3 $<$ /sub $>$ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	1.3	61
45	Ionic Liquid Adsorption and Nanotribology at the Silica–Oil Interface: Hundred-Fold Dilution in Oil Lubricates as Effectively as the Pure Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 4095-4099.	2.1	48
46	An ionic liquid lubricant enables superlubricity to be "switched on―in situ using an electrical potential. Chemical Communications, 2014, 50, 4368.	2.2	154
47	Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential. Journal of Physics Condensed Matter, 2014, 26, 284115.	0.7	47
48	Combined STM, AFM, and DFT Study of the Highly Ordered Pyrolytic Graphite/1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide Interface. Journal of Physical Chemistry C, 2014, 118, 10833-10843.	1.5	65
49	Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the $Au(111)$ â \in "ionic liquid interface as a function of potential. Physical Chemistry Chemical Physics, 2013, 15, 14624.	1.3	163
50	Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Physical Chemistry Chemical Physics, 2013, 15, 14616.	1.3	140
51	Dynamic Electrowetting and Dewetting of Ionic Liquids at a Hydrophobic Solid–Liquid Interface. Langmuir, 2013, 29, 2631-2639.	1.6	47
52	Dynamic wetting of a fluoropolymer surface by ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 3952.	1.3	44
53	Sustained Release of VEGF by Coaxial Electrospun Dextran/PLGA Fibrous Membranes in Vascular Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1811-1827.	1.9	60
54	Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. Journal of Biomedical Materials Research - Part A, 2010, 92A, 563-574.	2.1	44

Hua Li

#	Article	IF	CITATION
55	Controlled release of Berberine Chloride by electrospun core/shell PVP/PLCL fibrous membranes. International Journal of Materials and Product Technology, 2010, 37, 338.	0.1	8
56	Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid and Polymer Science, 2010, 288, 1113-1119.	1.0	25
57	Controlled Release of PDGF-bb by Coaxial Electrospun Dextran/Poly(L-lactide-co-ε-caprolactone) Fibers with an Ultrafine Core/Shell Structure. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 803-819.	1.9	56
58	Self-accelerated biodegradation of electrospun poly(ethylene glycol)–poly(l-lactide) membranes by loading proteinase K. Polymer Degradation and Stability, 2008, 93, 618-626.	2.7	20
59	In vitro degradation of porous poly(l-lactide-co-glycolide)/l²-tricalcium phosphate (PLGA/l²-TCP) scaffolds under dynamic and static conditions. Polymer Degradation and Stability, 2008, 93, 1838-1845.	2.7	91