
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8165819/publications.pdf Version: 2024-02-01

LOEPL ROCELL

#	Article	IF	CITATIONS
1	Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. Npj Climate and Atmospheric Science, 2022, 5, 5.	2.6	36
2	Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nature Climate Change, 2022, 12, 88-96.	8.1	26
3	An emission pathway classification reflecting the Paris Agreement climate objectives. Communications Earth & Environment, 2022, 3, .	2.6	32
4	Net-zero emissions targets are vague: three ways to fix. Nature, 2021, 591, 365-368.	13.7	240
5	Critical adjustment of land mitigation pathways for assessing countries' climate progress. Nature Climate Change, 2021, 11, 425-434.	8.1	61
6	The Climate Response to Emissions Reductions Due to COVIDâ€19: Initial Results From CovidMIP. Geophysical Research Letters, 2021, 48, e2020GL091883.	1.5	43
7	Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP. Geoscientific Model Development, 2021, 14, 3683-3695.	1.3	28
8	Reply to Comment on â€~Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'. Environmental Research Letters, 2021, 16, 068002.	2.2	3
9	Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections. Earth's Future, 2021, 9, e2020EF001900.	2.4	28
10	Emissions estimations should embed a precautionary principle. Nature Climate Change, 2021, 11, 638-640.	8.1	14
11	Economic damages from on-going climate change imply deeper near-term emission cuts. Environmental Research Letters, 2021, 16, 104053.	2.2	13
12	Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 2021, 11, 820-822.	8.1	129
13	Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison. Science of the Total Environment, 2021, 793, 148549.	3.9	26
14	Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery. Atmospheric Research, 2021, 264, 105866.	1.8	7
15	An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth & Environment, 2021, 2, .	2.6	52
16	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	1.6	26
17	Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nature Energy, 2021, 6, 1114-1123.	19.8	47
18	Can updated climate pledges limit warming well below 2°C?. Science, 2021, 374, 693-695.	6.0	80

#	Article	IF	CITATIONS
19	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	8.1	102
20	A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change, 2021, 11, 1055-1062.	8.1	69
21	The cost of mitigation revisited. Nature Climate Change, 2021, 11, 1035-1045.	8.1	34
22	COVID-19 recovery funds dwarf clean energy investment needs. Science, 2020, 370, 298-300.	6.0	101
23	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	5.4	68
24	Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 2020, 10, 913-919.	8.1	400
25	Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis. Climatic Change, 2020, 163, 1427-1442.	1.7	15
26	The role of energy in mitigating grain storage losses in India and the impact for nutrition. Resources, Conservation and Recycling, 2020, 163, 105100.	5.3	5
27	Changes to Carbon Isotopes in Atmospheric CO ₂ Over the Industrial Era and Into the Future. Global Biogeochemical Cycles, 2020, 34, e2019GB006170.	1.9	63
28	Early retirement of power plants in climate mitigation scenarios. Environmental Research Letters, 2020, 15, 094064.	2.2	38
29	Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO ₂ . Biogeosciences, 2020, 17, 2987-3016.	1.3	87
30	Energy modellers should explore extremes more systematically in scenarios. Nature Energy, 2020, 5, 104-107.	19.8	71
31	Emissions: world has four times the work or one-third of the time. Nature, 2020, 579, 25-28.	13.7	136
32	Uncertainty in carbon budget estimates due to internal climate variability. Environmental Research Letters, 2020, 15, 104064.	2.2	7
33	Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geoscientific Model Development, 2020, 13, 5175-5190.	1.3	70
34	Silicone v1.0.0: an open-source Python package for inferring missing emissions data for climate change research. Geoscientific Model Development, 2020, 13, 5259-5275.	1.3	24
35	Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 2019, 571, 335-342.	13.7	229
36	Unintentional unfairness when applying new greenhouse gas emissions metrics at country level. Environmental Research Letters, 2019, 14, 114039.	2.2	57

#	Article	IF	CITATIONS
37	Key technological enablers for ambitious climate goals: insights from the IPCC special report on global warming of 1.5 ŰC. Environmental Research Letters, 2019, 14, 111001.	2.2	28
38	Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot. Earth's Future, 2019, 7, 1283-1295.	2.4	28
39	Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change, 2019, 157, 189-219.	1.7	74
40	A new generation of emissions scenarios should cover blind spots in the carbon budget space. Nature Climate Change, 2019, 9, 798-800.	8.1	14
41	Modelling the multi-scaled nature of pest outbreaks. Ecological Modelling, 2019, 409, 108745.	1.2	16
42	A new scenario logic for the Paris Agreement long-term temperature goal. Nature, 2019, 573, 357-363.	13.7	307
43	The Antarctic Peninsula Under a 1.5°C Global Warming Scenario. Frontiers in Environmental Science, 2019, 7, .	1.5	117
44	Inconsistencies when applying novel metrics for emissions accounting to the Paris agreement. Environmental Research Letters, 2019, 14, 124055.	2.2	29
45	The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development, 2019, 12, 4375-4385.	1.3	56
46	Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nature Geoscience, 2019, 12, 964-971.	5.4	23
47	Energy system changes in 1.5â€ ⁻ °C, well below 2â€ ⁻ °C and 2â€ ⁻ °C scenarios. Energy Strategy Reviews, 2019, 69-80.	23.3 3.3	57
48	CurrentÂfossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications, 2019, 10, 101.	5.8	125
49	Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nature Communications, 2018, 9, 601.	5.8	106
50	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
51	Connecting the sustainable development goals by their energy inter-linkages. Environmental Research Letters, 2018, 13, 033006.	2.2	263
52	Implications of possible interpretations of â€~greenhouse gas balance' in the Paris Agreement. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160445.	1.6	72
53	Pathways limiting warming to 1.5°C: a tale of turning around in no time?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160457.	1.6	84
54	Reply to †Interpretations of the Paris climate target'. Nature Geoscience, 2018, 11, 222-222.	5.4	8

#	Article	IF	CITATIONS
55	Mitigation scenarios must cater to new users. Nature Climate Change, 2018, 8, 845-848.	8.1	27
56	Global mean temperature indicators linked to warming levels avoiding climate risks. Environmental Research Letters, 2018, 13, 064015.	2.2	15
57	A new scenario resource for integrated 1.5 °C research. Nature Climate Change, 2018, 8, 1027-1030.	8.1	120
58	Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 2018, 13, 063001.	2.2	498
59	Carbon prices across countries. Nature Climate Change, 2018, 8, 648-650.	8.1	86
60	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	2.2	823
61	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	1.6	46
62	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	8.1	380
63	Inclusive climate change mitigation and food security policy under 1.5 °C climate goal. Environmental Research Letters, 2018, 13, 074033.	2.2	37
64	Sea-level commitment as a gauge for climate policy. Nature Climate Change, 2018, 8, 653-655.	8.1	21
65	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	19.8	733
66	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
67	Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environmental Research Letters, 2018, 13, 064007.	2.2	79
68	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	2.2	162
69	Characterizing halfâ€aâ€degree difference: a review of methods for identifying regional climate responses to global warming targets. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e457.	3.6	177
70	Understanding the origin of Paris Agreement emission uncertainties. Nature Communications, 2017, 8, 15748.	5.8	82
71	A roadmap for rapid decarbonization. Science, 2017, 355, 1269-1271.	6.0	815
72	Equitable mitigation to achieve the Paris Agreement goals. Nature Climate Change, 2017, 7, 38-43.	8.1	270

#	Article	IF	CITATIONS
73	Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environmental Research Letters, 2017, 12, 114002.	2.2	39
74	Getting It Right Matters: Temperature Goal Interpretations in Geoscience Research. Geophysical Research Letters, 2017, 44, 10,662.	1.5	51
75	Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 2017, 10, 741-747.	5.4	422
76	The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 2017, 42, 251-267.	3.6	590
77	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	3.6	2,966
78	Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth System Dynamics, 2016, 7, 327-351.	2.7	508
79	Simulating the Earth system response to negative emissions. Environmental Research Letters, 2016, 11, 095012.	2.2	98
80	Carbon budgets and energy transition pathways. Environmental Research Letters, 2016, 11, 075002.	2.2	53
81	The cumulative carbon budget and its implications. Oxford Review of Economic Policy, 2016, 32, 323-342.	1.0	47
82	The world's biggest gamble. Earth's Future, 2016, 4, 465-470.	2.4	70
83	Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 2016, 6, 827-835.	8.1	536
84	Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nature Energy, 2016, 1, .	19.8	81
85	Mapping the climate change challenge. Nature Climate Change, 2016, 6, 663-668.	8.1	75
86	Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534, 631-639.	13.7	2,397
87	A scientific critique of the two-degree climate change target. Nature Geoscience, 2016, 9, 13-18.	5.4	282
88	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	8.1	973
89	Differences between carbon budget estimates unravelled. Nature Climate Change, 2016, 6, 245-252.	8.1	228
90	Geosciences after Paris. Nature Geoscience, 2016, 9, 187-189.	5.4	51

#	Article	IF	CITATIONS
91	Impact of short-lived non-CO ₂ mitigation on carbon budgets for stabilizing global warming. Environmental Research Letters, 2015, 10, 075001.	2.2	63
92	Mitigation choices impact carbon budget size compatible with low temperature goals. Environmental Research Letters, 2015, 10, 075003.	2.2	29
93	Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 2015, 5, 519-527.	8.1	708
94	Zero emission targets as long-term global goals for climate protection. Environmental Research Letters, 2015, 10, 105007.	2.2	220
95	The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Climatic Change, 2015, 133, 361-373.	1.7	90
96	National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Climate Change, 2015, 5, 1098-1106.	8.1	91
97	Can Paris pledges avert severe climate change?. Science, 2015, 350, 1168-1169.	6.0	260
98	Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. Technological Forecasting and Social Change, 2015, 90, 89-102.	6.2	132
99	Implications of potentially lower climate sensitivity on climate projections and policy. Environmental Research Letters, 2014, 9, 031003.	2.2	48
100	Disentangling the effects of CO ₂ and short-lived climate forcer mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16325-16330.	3.3	114
101	Questions of bias in climate models. Nature Climate Change, 2014, 4, 741-742.	8.1	4
102	Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 2014, 7, 709-715.	5.4	615
103	Air-pollution emission ranges consistent with the representative concentration pathways. Nature Climate Change, 2014, 4, 446-450.	8.1	52
104	A holistic approach to climate targets. Nature, 2013, 499, 160-161.	13.7	6
105	Probabilistic cost estimates for climate change mitigation. Nature, 2013, 493, 79-83.	13.7	255
106	2020 emissions levels required to limit warming to below 2 °C. Nature Climate Change, 2013, 3, 405-412.	8.1	159
107	The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C. Nature Climate Change, 2013, 3, 545-551.	8.1	57
108	National GHG emissions reduction pledges and 2°C: comparison of studies. Climate Policy, 2012, 12, 356-377.	2.6	25

#	Article	IF	CITATIONS
109	Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2012, 2, 248-253.	8.1	632
110	Emission pathways consistent with a 2 °C global temperature limit. Nature Climate Change, 2011, 1, 413-418.	8.1	262
111	Decision support for international climate policy – The PRIMAP emission module. Environmental Modelling and Software, 2011, 26, 1419-1433.	1.9	20
112	Discrepancies in historical emissions point to a wider 2020 gap between 2 °C benchmarks and aggregated national mitigation pledges. Environmental Research Letters, 2011, 6, 024002.	2.2	19
113	Copenhagen Accord pledges are paltry. Nature, 2010, 464, 1126-1128.	13.7	207
114	Analysis of the Copenhagen Accord pledges and its global climatic impacts—a snapshot of dissonant ambitions. Environmental Research Letters, 2010, 5, 034013.	2.2	44
115	Halfway to Copenhagen, no way to 2 °C. Nature Climate Change, 2009, 1, 81-83.	8.1	32
116	Estimated climate impact of replacing agriculture as the primary food production system. Environmental Research Letters, 0, , .	2.2	1