Radomir Kuzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stability of ultrafine grained copper. Physical Review B, 2002, 65, .	3.2	106
2	Hydrogen-induced defects in bulk niobium. Physical Review B, 2004, 69, .	3.2	77
3	Defect studies of nanocrystalline zirconia powders and sintered ceramics. Physical Review B, 2010, 81,	3.2	68
4	Interference phenomena observed by X-ray diffraction in nanocrystalline thin films. Journal of Applied Crystallography, 2004, 37, 613-620.	4.5	64
5	Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Materials Characterization, 2017, 123, 282-293.	4.4	63
6	Photoelectrochemical and structural properties of TiO 2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catalysis Today, 2017, 287, 130-136.	4.4	42
7	Structure and mechanical behaviour of interstitial-free steel processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2011, 509, 3522-3525.	5.5	39
8	Modeling of the work hardening in magnesium alloy sheets. International Journal of Plasticity, 2016, 76, 166-185.	8.8	38
9	Microstructure of Equal-Channel Angular Pressed Cu and Cu-Zr Samples Studied by Different Methods. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1174-1190.	2.2	35
10	Powder diffraction in Bragg–Brentano geometry with straight linear detectors. Journal of Applied Crystallography, 2015, 48, 613-618.	4.5	35
11	Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 466-477.	1.8	31
12	Ordered array of <mml:math <br="" altimg="s18.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>l%</mml:mi></mml:mrow></mml:math> particles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mrow><mml:mi>l²</mml:mi></mml:mrow>-Ti matrix studied by</mml:math 	7.9	30
13	small-angle X-ray scattering. Acta Materialia, 2014, 81, 71-82. Kinematical diffraction by distorted crystals – dislocation X-ray line broadening. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 136-149.	0.8	25
14	Preparation of gram quantities of high-quality titanate nanotubes and their composites with polyamide 6. Materials Chemistry and Physics, 2010, 124, 652-657.	4.0	23
15	In-situ X-ray diffraction studies of time and thickness dependence of crystallization of amorphous TiO2 thin films and stress evolution. Thin Solid Films, 2010, 519, 1649-1654.	1.8	22
16	Preparation of thin phthalocyanine layers and their structural and absorption properties. Thin Solid Films, 2009, 517, 5274-5279.	1.8	21
17	Microstructure evolution of CuZr polycrystals processed by high-pressure torsion. Journal of Materials Science, 2010, 45, 4631-4644.	3.7	19
18	Structural investigations of submicrocrystalline metals obtained by high-pressure torsion deformation, Journal of Alloys and Compounds, 2004, 378, 242-247,	5.5	18

RADOMIR KUZEL

#	Article	lF	CITATIONS
19	Spatial distribution of defects in ultra-fine grained copper prepared by high-pressure torsion. Physica Status Solidi A, 2003, 195, 335-349.	1.7	16
20	Ageing response of sub-transus heat treated Ti–6.8Mo–4.5Fe–1.5Al alloy. Journal of Alloys and Compounds, 2017, 724, 373-380.	5.5	16
21	Oriented SrFe12O19 thin films prepared by chemical solution deposition. Journal of Solid State Chemistry, 2011, 184, 3085-3094.	2.9	14
22	On X-Ray Diffraction Study of Microstructure of ZnO Thin Nanocrystalline Films with Strong Preferred Grain Orientation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 45-57.	2.2	14
23	EBSD investigation of the grain boundary distributions in ultrafine-grained Cu and Cu–Zr polycrystals prepared by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 785-789.	0.3	13
24	Strain-hardening behaviour of AZ31 magnesium alloys. International Journal of Materials Research, 2009, 100, 322-325.	0.3	13
25	X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3323-3332.	2.2	12
26	Microstructure and Thermal Stability of Ultra Fine Grained Mg and Mg-Gd Alloys Prepared by High-Pressure Torsion. Materials Science Forum, 2005, 482, 183-186.	0.3	9
27	Thin (111) oriented CoFe 2 O 4 and Co 3 O 4 films prepared by decomposition of layered cobaltates. Applied Surface Science, 2016, 376, 209-218.	6.1	9
28	Reciprocal-space mapping for simultaneous determination of texture and stress in thin films. Journal of Applied Crystallography, 2006, 39, 487-501.	4.5	8
29	Study of titanate nanotubes by X-ray and electron diffraction and electron microscopy. Materials Characterization, 2014, 87, 166-171.	4.4	8
30	Thermal Stability of Ultra Fine Grained Copper Prepared by High Pressure Torsion Using Various Pressures. Journal of Metastable and Nanocrystalline Materials, 2003, 17, 37-44.	0.1	7
31	Growth and characterization of thin oriented Co3O4 (111) films obtained by decomposition of layered cobaltates Na CoO2. Journal of Solid State Chemistry, 2015, 227, 17-24.	2.9	7
32	Influence of Al 2 O 3 Nanoparticles on the Thermal Stability of Ultra-Fine Grained Copper Prepared by High Pressure Torsion. Monatshefte Für Chemie, 2002, 133, 873-887.	1.8	6
33	XRD profile analysis of ECAP Cu and Cu + Zr samples. International Journal of Materials Research, 2009, 100, 880-883.	0.3	6
34	On X-ray diffraction study of preferred grain orientations in polycrystalline thin films — Multicomponent texture in KTaO3 films. Thin Solid Films, 2013, 530, 2-8.	1.8	5
35	Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating. Materials Characterization, 2014, 98, 26-36.	4.4	5
36	Characterization of W-type hexaferrite thin films prepared by chemical solution deposition. Thin Solid Films, 2021, 726, 138670.	1.8	5

RADOMIR KUZEL

#	Article	IF	CITATIONS
37	Use of magnetoplumbite and spinel ferrite seed layers for the growth of oriented Y ferrite thin films. Thin Solid Films, 2017, 622, 104-110.	1.8	4
38	The hexaferrite Sr3Co2Fe24O41 thin films by chemical solution deposition method: Synthesis and characterization. Journal of Magnetism and Magnetic Materials, 2019, 469, 245-252.	2.3	4
39	Positron Annihilation Studies of Microstructure of Ultra Fine Grained Metals Prepared by Severe Plastic Deformation. Materials Science Forum, 2005, 482, 207-210.	0.3	3
40	<i>In Situ</i> X-Ray Diffraction Study of Thermal Stability of Cu and Cu-Zr Samples Processed by ECAP. Materials Science Forum, 2013, 753, 279-284.	0.3	3
41	M-type ferrites as template layers for the growth of oriented Y-type ferrites through chemical solution deposition method. Journal of the European Ceramic Society, 2016, 36, 3173-3183.	5.7	3
42	X-ray Diffraction Investigations of TiO2 Thin Films and Their Thermal Stability. Materials Research Society Symposia Proceedings, 2011, 1352, 57.	0.1	2
43	Structural Study of Tailored Titania Thin Layers. Collection of Czechoslovak Chemical Communications, 2008, 73, 1222-1230.	1.0	2
44	Observation of Anomalously Large Magnetoelectric Coupling in the Hexagonal Zâ€Type Ferrite Films. Advanced Electronic Materials, 0, , 2101294.	5.1	2
45	Verification of the Trend of MPL Variation in Fatigue by Modern Methods. Key Engineering Materials, 0, 606, 99-102.	0.4	1
46	SrAl12O19 thin films by chemical solution deposition and their use as buffer layers for oriented growth of hexagonal ferrites. Thin Solid Films, 2016, 616, 228-237.	1.8	1
47	Mechanical Properties and Microstructure Development in Ultrafineâ€grained Materials Processed by Equalâ€channel Angular Pressing. , 0, , .		1
48	Preface: State of the Art of Powder Diffraction. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, III-IV.	0.8	1
49	The Effect of Heat Treatment on Morphology and Phase Composition of Grain Boundary Phases in Mg-Zn-Y-Nd-Zr. Defect and Diffusion Forum, 2015, 365, 30-35.	0.4	0
50	The effect of different atmospheres on structural changes of titanate nanotubes during heating. Journal of Thermal Analysis and Calorimetry, 2017, 128, 779-785.	3.6	0