Mika Jokinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816497/publications.pdf

Version: 2024-02-01

623734 501196 35 905 14 28 citations g-index h-index papers 35 35 35 956 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustained In-Vivo Release of Triptorelin Acetate from a Biodegradable Silica Depot: Comparison to Pamorelin \hat{A}^{\otimes} LA. Nanomaterials, 2021, 11, 1578.	4.1	7
2	Impact of storage on sensory quality of blackcurrant juices prepared with or without enzymatic treatment at industrial scale. European Food Research and Technology, 2020, 246, 2611-2620.	3.3	6
3	Multiphase matrix of silica, culture medium and air for 3D mammalian cell culture. Cytotechnology, 2020, 72, 271-282.	1.6	6
4	Effects of capsidâ€modified oncolytic adenoviruses and their combinations with gemcitabine or silica gel on pancreatic cancer. International Journal of Cancer, 2012, 131, 253-263.	5.1	10
5	About Interactions Between Sol-Gel Derived Silica, Titania and Living Organisms. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 251-268.	0.2	5
6	Macrophage Induced Effect of Particulate Silica on Rat Mesenchymal Stem Cells <i>In Vitro</i> Engineering Materials, 2008, 396-398, 123-126.	0.4	0
7	Ensuring Implant Fixation and Sol-Gel Derived Ceramic Coatings. Key Engineering Materials, 2008, 377, 111-132.	0.4	2
8	Mechanistic studies on release of large and small molecules from biodegradable SiO2. International Journal of Pharmaceutics, 2007, 336, 382-390.	5.2	49
9	In vitro degradation of porous poly(dl-lactide-co-glycolide) (PLGA)/bioactive glass composite foams with a polar structure. Polymer Degradation and Stability, 2007, 92, 14-23.	5.8	37
10	Sol-gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part I: design, preparation and characterization. Journal of Materials Science: Materials in Medicine, 2007, 18, 1863-1873.	3.6	28
11	Sol-Gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response. Journal of Materials Science: Materials in Medicine, 2007, 18, 1633-1642.	3.6	62
12	Adjustably Bioresorbable Sol-Gel Derived SiO2 Matrices for Release of Large Biologically Active Molecules. Journal of Sol-Gel Science and Technology, 2005, 36, 147-156.	2.4	38
13	In Vitro Behavior of Yttrium Silica Sol-Gel Microspheres. Key Engineering Materials, 2005, 284-286, 411-414.	0.4	6
14	Chemical characterization of bioresorbable sol–gel derived SiO2 matrices prepared at protein-compatible pH. Journal of Non-Crystalline Solids, 2005, 351, 3225-3234.	3.1	38
15	Bioactive Glass (S53P4) and Mesoporous MCM-41-Type SiO ₂ Adjusting In Vitro Bioactivity of Porous PDLLA. Key Engineering Materials, 2004, 254-256, 557-560.	0.4	2
16	The Degradation and Bioactivity of Composites of Silica Xerogel and Novel Biopolymer of Hydroxyproline. Key Engineering Materials, 2004, 254-256, 553-556.	0.4	1
17	Use of sol-gel-derived titania coating for direct soft tissue attachment. Journal of Biomedical Materials Research - Part A, 2004, 70A, 169-178.	4.0	94
18	Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites. Biomaterials, 2003, 24, 5173-5182.	11.4	32

#	Article	IF	Citations
19	Drug Release from Poly(D, L-Lactide) / SiO ₂ Composites. Key Engineering Materials, 2003, 254-256, 489-492.	0.4	2
20	In Vitro Bioactivity of Sol-Gel-Derived Silica Fiber and P(L/D,L) LA Composite. Key Engineering Materials, 2003, 240-242, 159-162.	0.4	2
21	Effect of lonic Variables (SiO ₂ , Ca ²⁺ ,) Tj ETQq1 1 0.784314 rgBT Materials, 2003, 240-242, 249-252.	Overlock 0.4	10 Tf 50 66 0
22	Creation of Bioactive Glass Coating on Titanium by Local Laser Irradiation; Part 2: Effect of the Irradiation on the Bioactivity of the Glass. Key Engineering Materials, 2003, 240-242, 225-228.	0.4	5
23	Creation of Bioactive Glass Coating on Titanium by Local Laser Irradiation; Part 1: Optimization of the Processing Parameters. Key Engineering Materials, 2003, 240-242, 221-224.	0.4	5
24	Methods to Enhance Biomimetic Activity and Ability to Tissue Bonding of Sol-Gel-Derived Nanoporous Titania. Key Engineering Materials, 2002, 218-220, 207-212.	0.4	5
25	Drug release from biodegradable silica fibers. Journal of Non-Crystalline Solids, 2002, 306, 1-10.	3.1	54
26	Effect of synthesis parameters of the sol–gel-processed spray-dried silica gel microparticles on the release rate of dexmedetomidine. Biomaterials, 2002, 23, 2795-2801.	11.4	58
27	Colloidal Dimensions Versus Biodegradation and Calcium Phosphate Formation on Sol-Gel Derived Silica Fibers. Key Engineering Materials, 2001, 218-220, 283-286.	0.4	4
28	The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 349-359.	4.7	90
29	Adjustable biodegradation for ceramic fibres derived from silica sols. Journal of the European Ceramic Society, 2000, 20, 1739-1748.	5.7	27
30	Nanoscale Surface Structure of Bioactive Glass (S53P4) as a Function of Immersion Time in SBF. Key Engineering Materials, 2000, 192-195, 601-604.	0.4	1
31	Title is missing!. Journal of Sol-Gel Science and Technology, 1998, 12, 159-167.	2.4	42
32	Influence of sol and surface properties onin vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method., 1998, 42, 295-302.		124
33	Viscoelastic characterization of three different sol–gel derived silica gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141, 205-216.	4.7	51
34	The Release and Bioactivity of Lysozyme from Selected Sol-Gel Derived SiO ₂ Matrices. Key Engineering Materials, 0, 396-398, 547-550.	0.4	1
35	Rationale of Using Conventional Sol-Gel Derived SiO ₂ for Delivery of Biologically Active Agents. Key Engineering Materials, 0, 377, 195-210.	0.4	11