Rosalia Maria Cigala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8164875/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Environmental behaviour of a pesticide metabolite, the AMPA. Sequestration of Ca2+, Mg2+, Cu2+, Zn2+ and Al3+. Chemosphere, 2022, 306, 135535.	8.2	1
2	MO139INDOLE-3-ACETIC ACID CORRELATES WITH MONOCYTE TO HIGH-DENSITY LIPOPROTEIN (HDL) RATIO (MHR) IN CHRONIC KIDNEY DISEASE (CKD) PATIENTS AND MAY BE EFFICIENTLY REMOVED BY ACETATE-FREE BIOFILTRATION. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
3	The Solution Behavior of Dopamine in the Presence of Mono and Divalent Cations: A Thermodynamic Investigation in Different Experimental Conditions. Biomolecules, 2021, 11, 1312.	4.0	4
4	Bifunctional 3-Hydroxy-4-Pyridinones as Potential Selective Iron(III) Chelators: Solution Studies and Comparison with Other Metals of Biological and Environmental Relevance. Molecules, 2021, 26, 7280.	3.8	3
5	The Effect of Metal Cations on the Aqueous Behavior of Dopamine. Thermodynamic Investigation of the Binary and Ternary Interactions with Cd2+, Cu2+ and UO22+ in NaCl at Different Ionic Strengths and Temperatures. Molecules, 2021, 26, 7679.	3.8	3
6	Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. Journal of Molecular Liquids, 2020, 319, 114349.	4.9	15
7	Nature as Resource. Thermodynamic characterization of natural and synthetic polymers and their sequestering ability towards some bivalent metal cations. Journal of Chemical Thermodynamics, 2020, 150, 106205.	2.0	1
8	P0716RAAS INHIBITION MODULATES KYNURENINE LEVELS IN A CKD POPULATION WITH AND WITHOUT TYPE 2 DIABETES MELLITUS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
9	Thermodynamic Behavior of Polyalcohols and Speciation Studies in the Presence of Divalent Metal Cations. Journal of Chemical & Engineering Data, 2020, 65, 2805-2812.	1.9	3
10	RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. International Urology and Nephrology, 2020, 52, 1125-1133.	1.4	14
11	A new bis-(3-hydroxy-4-pyridinone)-DTPA-derivative: Synthesis, complexation of di-/tri-valent metal cations and in vivo M3+ sequestering ability. Journal of Molecular Liquids, 2019, 281, 280-294.	4.9	14
12	Speciation Studies of Bifunctional 3-Hydroxy-4-Pyridinone Ligands in the Presence of Zn2+ at Different Ionic Strengths and Temperatures. Molecules, 2019, 24, 4084.	3.8	14
13	Thermodynamic study on polyaspartic acid biopolymer in solution and prediction of its chemical speciation and bioavailability in natural fluids. Journal of Molecular Liquids, 2019, 274, 68-76.	4.9	6
14	Characterization of the thermodynamic properties of some benzenepolycarboxylic acids: Acid-base properties, weak complexes, total and neutral species solubility, solubility products in NaClaq, (CH3)4NClaq and Synthetic Sea Water (SSW). Fluid Phase Equilibria, 2019, 480, 41-52.	2.5	1
15	Thermodynamic Study on the Protonation and Na+, Ca2+, Mg2+-Complexation of a Biodegradable Chelant (HEIDA) at Different Ionic Strengths and Temperatures. Journal of Solution Chemistry, 2018, 47, 528-543.	1.2	1
16	Modeling solubility and acid-base properties of some polar side chain amino acids in NaCl and (CH 3) 4 NCl aqueous solutions at different ionic strengths and temperatures. Fluid Phase Equilibria, 2018, 459, 51-64.	2.5	21
17	New bis-(3-hydroxy-4-pyridinone)-NTA-derivative: Synthesis, binding ability towards Ca2+, Cu2+, Zn2+, Al3+, Fe3+ and biological assays. Journal of Molecular Liquids, 2018, 272, 609-624.	4.9	12
18	Use of Gantrez Copolymers as Potential Chelating Agent for the Selective Sequestration of Metal Ions. Studies of the Interactions in Aqueous Solution at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2018, 63, 4193-4204.	1.9	4

Rosalia Maria Cigala

#	Article	IF	CITATIONS
19	Exploring various ligand classes for the efficient sequestration of stannous cations in the environment. Science of the Total Environment, 2018, 643, 704-714.	8.0	3
20	Bifunctional 3-hydroxy-4-pyridinones as effective aluminium chelators: synthesis, solution equilibrium studies and in vivo evaluation. Journal of Inorganic Biochemistry, 2018, 186, 116-129.	3.5	13
21	Potentiometric, UV and 1 H NMR study on the interaction of penicillin derivatives with Zn(II) in aqueous solution. Biophysical Chemistry, 2017, 223, 1-10.	2.8	12
22	Thermodynamic Parameters for the Interaction of Amoxicillin and Ampicillin with Magnesium in NaCl Aqueous Solution, at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 1018-1027.	1.9	9
23	On the complexation of metal cations with "pure― diethylenetriamine-N,N,N′,N′′,N′′-pentakis(methylenephosphonic) acid. New Journal of Chemistry, 2 4065-4075.	2018,41,	17
24	Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids. Fluid Phase Equilibria, 2017, 434, 63-73.	2.5	16
25	Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters. Chemosphere, 2017, 183, 107-118.	8.2	7
26	Thermodynamic Properties of O-Donor Polyelectrolytes: Determination of the Acid–Base and Complexing Parameters in Different Ionic Media at Different Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 2676-2688.	1.9	14
27	Sequestration of Aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. Chemosphere, 2017, 186, 535-545.	8.2	24
28	Sequestering Ability of Oligophosphate Ligands toward Al ³⁺ in Aqueous Solution. Journal of Chemical & Engineering Data, 2017, 62, 3981-3990.	1.9	32
29	Potential Antibacterial Activity of Marine Macroalgae against Pathogens Relevant for Aquaculture and Human Health. Journal of Pure and Applied Microbiology, 2017, 11, 1695-1706.	0.9	29
30	Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities. Monatshefte Für Chemie, 2016, 147, 1481-1505.	1.8	1
31	Acid–Base and Thermodynamic Properties of <scp>d</scp> -Gluconic Acid and Its Interaction with Sn ²⁺ and Zn ²⁺ . Journal of Chemical & Engineering Data, 2016, 61, 2040-2051.	1.9	6
32	Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters. Chemosphere, 2016, 150, 341-356.	8.2	22
33	Modelling the Hydrolysis of Mixed Mono-, Di- and Trimethyltin(IV) Complexes in Aqueous Solutions. Journal of Solution Chemistry, 2015, 44, 1611-1625.	1.2	1
34	Thermodynamics of Zn2+ 2-mercaptopyridine-N-oxide and 2-hydroxypyridine-N-oxide interactions: Stability, solubility, activity coefficients and medium effects. Journal of Molecular Liquids, 2015, 211, 876-884.	4.9	3
35	Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes. Monatshefte FÃ1/4r Chemie, 2015, 146, 527-540.	1.8	15
36	On the interaction of phytate with proton and monocharged inorganic cations in different ionic media, and modeling of acid-base properties at low ionic strength. Journal of Chemical Thermodynamics, 2015, 90, 51-58.	2.0	8

Rosalia Maria Cigala

#	Article	IF	CITATIONS
37	Solubility and modeling acid–base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures. European Journal of Pharmaceutical Sciences, 2015, 78, 37-46.	4.0	14
38	Thermodynamic Data for the Modeling of Lanthanoid(III) Sequestration by Reduced Glutathione in Aqueous Solution. Journal of Chemical & Engineering Data, 2015, 60, 192-201.	1.9	13
39	The effect of the tetraalkylammonium salts on the protonation thermodynamics of the phytate anion. Fluid Phase Equilibria, 2014, 383, 126-133.	2.5	8
40	Some Thermodynamic Properties of Aqueous 2-Mercaptopyridine-N-Oxide (Pyrithione) Solutions. Journal of Solution Chemistry, 2014, 43, 1093-1109.	1.2	6
41	Acidâ \in "Base Properties and Alkali and Alkaline Earth Metal Complex Formation in Aqueous Solution of Diethylenetriamine- <i>N</i> , <i>N<td>3.7</td><td>28</td></i>	3.7	28
42	Thermodynamics for Proton Binding of Pyridine in Different Ionic Media at Different Temperatures. Journal of Chemical & Engineering Data, 2014, 59, 143-156.	1.9	14
43	Thermodynamics of proton binding and weak (Clâ^, Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). Journal of Chemical Thermodynamics, 2014, 77, 98-106.	2.0	30
44	Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte FÃ1⁄4r Chemie, 2013, 144, 761-772.	1.8	24
45	Enhancement of Hydrolysis through the Formation of Mixed Heterometal Species: Al3+/CH3Sn3+ Mixtures. Journal of Chemical & Engineering Data, 2013, 58, 821-826.	1.9	6
46	Interaction of Phytate with Ag ⁺ , CH ₃ Hg ⁺ , Mn ²⁺ , Fe ²⁺ , Co ²⁺ , and VO ²⁺ : Stability Constants and Sequestering Ability. Journal of Chemical & Engineering Data, 2012, 57, 2838-2847.	1.9	21
47	The inorganic speciation of tin(II) in aqueous solution. Geochimica Et Cosmochimica Acta, 2012, 87, 1-20.	3.9	63
48	Sequestering Ability of Phytate toward Biologically and Environmentally Relevant Trivalent Metal Cations. Journal of Agricultural and Food Chemistry, 2012, 60, 8075-8082.	5.2	41
49	Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids, 2012, 43, 629-648.	2.7	40
50	Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. Journal of Molecular Liquids, 2012, 165, 143-153.	4.9	24
51	Thermodynamics of binary and ternary interactions in the tin(II)/phytate system in aqueous solutions, in the presence of Clâ^' or Fâ^'. Journal of Chemical Thermodynamics, 2012, 51, 88-96.	2.0	22
52	Speciation of Al ³⁺ in fairly concentrated solutions (20–200 mmol L ^{â^'1}) at I=1 mol L ^{â^'1} (NaNO ₃), in the acidic pH range, at different temperatures. Chemical Speciation and Bioavailability, 2011, 23, 33-37.	2.0	13
53	Hydrolysis of Monomethyl-, Dimethyl-, and Trimethyltin(IV) Cations in Fairly Concentrated Aqueous Solutions at <i>I</i> = 1 mol·L ^{â^'1} (NaNO ₃) and <i>T</i> = 298.15 K. Evidence for the Predominance of Polynuclear Species. Journal of Chemical & Engineering Data, 2011, 56, 1108-1115.	1.9	11
54	Solubility and acid–base properties of concentrated phytate in self-medium and in NaClaq at T=298.15K. Journal of Chemical Thermodynamics, 2010, 42, 1393-1399.	2.0	30

#	Article	IF	CITATIONS
55	Electrochemical Study on the Stability of Phytate Complexes with Cu ²⁺ , Pb ²⁺ , Zn ²⁺ , and Ni ²⁺ : A Comparison of Different Techniques. Journal of Chemical & Engineering Data, 2010, 55, 4757-4767.	1.9	40
56	Mixing Effects on the Protonation of Polycarboxylates. Protonation of Benzenehexacarboxylate in LiClâ"KCl, NaClâ"KCl, NaClâ"LiCl, and LiClâ"CsCl Aqueous Solutions at <i>I</i> = 1 mol·L ^{â"1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2009, 54, 2137-2139.	1.9	5
57	Mixing effects on the protonation of polyacrylate in LiCl/KCl aqueous solutions at different ionic strengths, I=1 to 3.5Âmol Lâ^'1, at T=298.15ÂK. Journal of Molecular Liquids, 2008, 143, 129-133.	4.9	21
58	Solubility and activity coefficients of acidic and basic non-electrolytes in aqueous salt solutions. Fluid Phase Equilibria, 2008, 263, 43-54.	2.5	40
59	Solubility and Acid–Base Properties of Ethylenediaminetetraacetic Acid in Aqueous NaCl Solution at 0 ≤i>l ≤6 mol·kg ^{â°1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data 2008, 53, 363-367.	a, 1. 9	32
60	Mixing effects on the protonation of some polycarboxylates in NaClaq+KClaq at different ionic strengths. Talanta, 2007, 72, 1059-1065.	5.5	7