Vincenzina Strano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8164155/publications.pdf

Version: 2024-02-01

687363 642732 25 662 13 23 citations h-index g-index papers 25 25 25 1044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. Journal of Physical Chemistry C, 2014, 118, 28189-28195.	3.1	142
2	Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes. Thin Solid Films, 2012, 520, 4432-4435.	1.8	104
3	Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls. Applied Physics Letters, 2014, 105, .	3.3	71
4	Radiative mechanism and surface modification of four visible deep level defect states in ZnO nanorods. Nanoscale, 2016, 8, 995-1006.	5.6	52
5	Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Applied Physics Letters, 2015, 106, .	3.3	42
6	Enhanced Quality, Growth Kinetics, and Photocatalysis of ZnO Nanowalls Prepared by Chemical Bath Deposition. Crystal Growth and Design, 2015, 15, 4206-4212.	3.0	30
7	A novel gas-phase mono and bimetallic clusters decorated Zno nanorods electrochemical sensor for 4-aminophenol detection. Journal of Electroanalytical Chemistry, 2018, 811, 89-95.	3.8	24
8	Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Applied Physics Letters, 2015, 106, .	3.3	21
9	Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes. Beilstein Journal of Nanotechnology, 2017, 8, 287-295.	2.8	21
10	Comparison of the Sensing Properties of ZnO Nanowalls-Based Sensors toward Low Concentrations of CO and NO2. Chemosensors, 2017, 5, 20.	3.6	19
11	Universal model for defect-related visible luminescence in ZnO nanorods. RSC Advances, 2016, 6, 73170-73175.	3.6	16
12	Free carrier enhanced depletion in ZnO nanorods decorated with bimetallic AuPt nanoclusters. Nanoscale, 2020, 12, 19213-19222.	5.6	15
13	The role of Zn vacancies in UV sensing with ZnO nanorods. Applied Physics Letters, 2016, 109, .	3.3	14
14	Enhanced sensitivity in non-enzymatic glucose detection by improved growth kinetics of Ni-based nanostructures. Nanotechnology, 2018, 29, 165601.	2.6	13
15	Role of Au _{<i>x</i>} Pt _{1–<i>x</i>} Clusters in the Enhancement of the Electrochemical Activity of ZnO Nanorod Electrodes. Journal of Physical Chemistry C, 2017, 121, 15644-15652.	3.1	12
16	Low-cost synthesis of pure ZnO nanowalls showing three-fold symmetry. Nanotechnology, 2018, 29, 135707.	2.6	11
17	Localized Energy Band Bending in ZnO Nanorods Decorated with Au Nanoparticles. Nanomaterials, 2021, 11, 2718.	4.1	11
18	Hierarchical ZnO nanorods/Ni(OH) ₂ nanoflakes for room-temperature, cheap fabrication of non-enzymatic glucose sensors. RSC Advances, 2016, 6, 111374-111379.	3.6	10

#	Article	IF	Citations
19	Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature. Chemosensors, 2019, 7, 18.	3.6	9
20	ZnO Microflowers Grown by Chemical Bath Deposition: A Low-Cost Approach for Massive Production of Functional Nanostructures. Chemosensors, 2019, 7, 62.	3.6	8
21	Low-cost and facile synthesis of Ni(OH) ₂ /ZnO nanostructures for high-sensitivity glucose detection. Nanotechnology, 2018, 29, 015502.	2.6	7
22	A Miniaturized Electrochemical System Based on Nickel Oxide Species for Glucose Sensing Applications. BioNanoScience, 2017, 7, 58-63.	3.5	6
23	LTPS TFT technology on flexible substrates for sensor applications. , 2014, , .		3
24	(Invited) Flexible Sensors Based on Low-Temperature Polycrystalline Silicon Thin Film Transistor Technology. ECS Transactions, 2014, 64, 165-173.	0.5	1
25	ZnO nanowalls integrated on ultra-thin flexible TFT based on polysilicon for pH sensing. , 2014, , .		0