
Christoph Schüth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8164110/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environmental Science & Technology, 2012, 46, 3655-3670.	10.0	373
2	Solubility-Normalized Combined Adsorption-Partitioning Sorption Isotherms for Organic Pollutants. Environmental Science & Technology, 2002, 36, 4689-4697.	10.0	216
3	Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Applied Catalysis B: Environmental, 1998, 18, 215-221.	20.2	162
4	Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 2018, 626, 953-961.	8.0	146
5	Monitoring and evaluation of dechlorination processes using compoundâ€specific chlorine isotope analysis. Rapid Communications in Mass Spectrometry, 2007, 21, 3077-3084.	1.5	94
6	Climate change or irrigated agriculture – what drives the water level decline of Lake Urmia. Scientific Reports, 2020, 10, 236.	3.3	92
7	Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. Journal of Contaminant Hydrology, 2003, 64, 269-281.	3.3	88
8	Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Applied Catalysis B: Environmental, 2000, 28, 147-152.	20.2	71
9	Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. Journal of Hydrology, 2011, 400, 255-266.	5.4	67
10	Field application of a tailored catalyst for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Applied Catalysis B: Environmental, 2004, 52, 197-203.	20.2	61
11	Carbon Isotope Fractionation during Aerobic Biodegradation of Trichloroethene by Burkholderia cepacia G4: a Tool To Map Degradation Mechanisms. Applied and Environmental Microbiology, 2002, 68, 1728-1734.	3.1	60
12	Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. Journal of Hydrology, 2019, 577, 123944.	5.4	55
13	Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewaterâ€related fluxes in the hyporheic and riparian zone. Water Resources Research, 2013, 49, 426-440.	4.2	49
14	Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE). Chemosphere, 2001, 44, 1281-1286.	8.2	41
15	Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments. Chemosphere, 2018, 203, 34-43.	8.2	36
16	Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers. Journal of Contaminant Hydrology, 2003, 66, 25-37.	3.3	35
17	Groundwater evaporation from salt pans: Examples from the eastern Arabian Peninsula. Journal of Hydrology, 2015, 531, 792-801.	5.4	35
18	Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq. Science of the Total Environment, 2016, 562, 935-945.	8.0	34

Christoph Schüth

#	Article	IF	CITATIONS
19	YouTube as a crowd-generated water level archive. Science of the Total Environment, 2016, 568, 189-195.	8.0	33
20	Occurrence and distribution of organic trace substances in waters from the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2013, 20, 7124-7139.	5.3	31
21	A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh. Hydrogeology Journal, 2017, 25, 617-637.	2.1	30
22	lsotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chemical Geology, 2015, 413, 51-62.	3.3	29
23	A risk assessment methodology to evaluate the risk failure of managed aquifer recharge in the Mediterranean Basin. Hydrology and Earth System Sciences, 2018, 22, 3213-3227.	4.9	29
24	Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron. Journal of Contaminant Hydrology, 2008, 97, 13-26.	3.3	28
25	Comparison of precipitation collectors used in isotope hydrology. Chemical Geology, 2018, 488, 171-179.	3.3	27
26	Processes controlling the extent of groundwater pollution with chromium from tanneries in the Hazaribagh area, Dhaka, Bangladesh. Science of the Total Environment, 2020, 710, 136213.	8.0	27
27	Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Chemosphere, 2020, 243, 125332.	8.2	27
28	Possible factors for increasing water salinity in an embanked coastal island in the southwest Bengal Delta of Bangladesh. Science of the Total Environment, 2020, 713, 136668.	8.0	25
29	Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Advances in Water Resources, 2017, 99, 38-52.	3.8	24
30	Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China. Environmental Pollution, 2019, 246, 198-206.	7.5	23
31	Complexity vs. Simplicity: Groundwater Model Ranking Using Information Criteria. Ground Water, 2014, 52, 573-583.	1.3	20
32	Reactive Transport of Iomeprol during Stream-Groundwater Interactions. Environmental Science & Technology, 2014, 48, 199-207.	10.0	20
33	Binary Desorption Isotherms of TCE and PCE from Silica Gel and Natural Solids. Environmental Science & Technology, 2000, 34, 4341-4347.	10.0	19
34	Seawater intrusion caused by unmanaged groundwater uses in a coastal tourist area, Cox's Bazar, Bangladesh. Environmental Earth Sciences, 2018, 77, 1.	2.7	19
35	Nitrogen cycling and origin of ammonium during infiltration of treated wastewater for managed aquifer recharge. Applied Geochemistry, 2018, 97, 71-80.	3.0	19
36	Improving large-scale groundwater models by considering fossil gradients. Advances in Water Resources, 2017, 103, 32-43.	3.8	17

Christoph Schã¼th

#	Article	IF	CITATIONS
37	Vacuum assisted removal of volatile to semi volatile organic contaminants from water using hollow fiber membrane contactorsII: A hybrid numerical-analytical modeling approach. Journal of Membrane Science, 2007, 292, 17-28.	8.2	15
38	The impact of hydrogeological settings on geochemical evolution of groundwater in karstified limestone aquifer basin in northwest Sri Lanka. Environmental Earth Sciences, 2015, 73, 8061-8073.	2.7	15
39	Combination of zeolite barrier and bio sparging techniques to enhance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. Chemosphere, 2021, 273, 128555.	8.2	15
40	Urban impacts analysis on hydrochemical and hydrogeological evolution of groundwater in shallow aquifer Linares, Mexico. Environmental Earth Sciences, 2012, 66, 1871-1880.	2.7	14
41	Matrix versus fracture permeability in a regional sandstone aquifer (Wajid sandstone, SW Saudi) Tj ETQq1 1 0.78	4314 rgB1 1.4	- /Overlock 1 14
42	Assessment of soil buffer capacity on nutrients and pharmaceuticals in nature-based solution applications. Environmental Science and Pollution Research, 2019, 26, 759-774.	5.3	14
43	Estimating groundwater recharge for an arid karst system using a combined approach of time-lapse camera monitoring and water balance modelling. Hydrological Processes, 2016, 30, 771-782.	2.6	12
44	The Riddle of the Springs of Dilmun—Does the Gilgamesh Epic Tell the Truth?. Ground Water, 2014, 52, 640-644.	1.3	11
45	Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge. Science of the Total Environment, 2018, 642, 914-924.	8.0	11
46	Response to Comment on "Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Technology, 2012, 46, 11469-11470.	10.0	10
47	The evolution of the groundwater quality in the alluvial aquifers of the south-western part of Bengal Basin, Bangladesh. Environmental Earth Sciences, 2019, 78, 1.	2.7	10
48	Effect of water leaching on biochar properties and its impact on organic contaminant sorption. Environmental Science and Pollution Research, 2020, 27, 691-703.	5.3	10
49	Vacuum assisted removal of volatile to semi-volatile organic contaminants from water using hollow fiber membrane contactorsI: Experimental results. Journal of Membrane Science, 2007, 292, 9-16.	8.2	9
50	Looking back - Looking forward: A novel multi-time slice weight-of-evidence approach for defining reference conditions to assess the impact of human activities on lake systems. Science of the Total Environment, 2018, 626, 1036-1046.	8.0	9
51	A simple and robust wetland classification approach by using optical indices, unsupervised and supervised machine learning algorithms. Remote Sensing Applications: Society and Environment, 2021, 23, 100569.	1.5	9
52	Effects of lead toxicity on the total chlorophyll content and growth changes of the aquatic plant <i>Ceratophyllum demersum</i> L. International Journal of Environmental Studies, 2017, 74, 119-128.	1.6	8
53	Katalytische Dechlorierung von Chlorkohlenwasserstoffen aus kontaminierten GrundwÄ s sern. Grundwasser, 2002, 7, 140-145.	1.4	7
54	Estimating water balance components in irrigated agriculture using a combined approach of soil moisture and energy balance monitoring, and numerical modelling. Hydrological Processes, 2021, 35, e14077.	2.6	7

Christoph Schüth

#	Article	IF	CITATIONS
55	A lowâ€cost environmental chamber to simulate warm climatic conditions. Vadose Zone Journal, 2020, 19, e20023.	2.2	6
56	Katalytische Hydrodechlorierung von LCKW im Rahmen der Abstromsicherung mittels ?Drain-and-Gate? am Standort Denkendorf. Grundwasser, 2003, 8, 140-145.	1.4	5
57	Technico-economic assessment of groundwater treatment by palladium-on-zeolite-catalyst in comparison to GAC fixed bed adsorbers. Water Science and Technology, 2010, 62, 708-718.	2.5	5
58	Hydrodynamic analysis of a Mediterranean aquifer system with the use of hydrochemical and isotopical analysis as supporting tools. Environmental Earth Sciences, 2018, 77, 1.	2.7	5
59	New Tools for Coherent Information Base for IWRM in Arid Regions: The Upper Mega Aquifer System on the Arabian Peninsula. , 2016, , 85-106.		5
60	Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water. Water (Switzerland), 2020, 12, 711.	2.7	4
61	Age and origin of groundwater resources in the Ararat Valley, Armenia: a baseline study applying hydrogeochemistry and environmental tracers. Hydrogeology Journal, 2021, 29, 2517-2527.	2.1	4
62	Delineating MAR Sites Using GIS-MCDA for Nuweiba Alluvial Fan Aquifer, Sinai, Egypt. Water (Switzerland), 2022, 14, 475.	2.7	4
63	Spatial variation of boron in groundwater in South Iraq. International Journal of Environmental Studies, 2015, 72, 696-712.	1.6	3
64	Optimization of compoundâ€specific chlorine stable isotope analysis of chloroform using the Taguchi design of experiments. Rapid Communications in Mass Spectrometry, 2020, 34, e8922.	1.5	3
65	Groundwater Flow Model Calibration of a Coastal Multilayer Aquifer System Based on Statistical Sensitivity Analysis. Environmental Modeling and Assessment, 0, , 1.	2.2	3
66	Wenig ist mehr: Hydrogeologie arider Gebiete. Grundwasser, 2010, 15, 219-219.	1.4	0
67	Hydrogeology of arid and semiarid environments. Grundwasser, 2018, 23, 3-3.	1.4	0
68	Themenheft "Grundwasserschutz und Grundwasserbewirtschaftung im Klimawandel". Grundwasser, 2021, 26, 1-2.	1.4	0