Joshua D Kaggie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816403/publications.pdf

Version: 2024-02-01

48 papers 1,369 citations

471509 17 h-index 34 g-index

52 all docs 52 docs citations

52 times ranked 1455 citing authors

#	Article	IF	CITATIONS
1	Federated learning for predicting clinical outcomes in patients with COVID-19. Nature Medicine, 2021, 27, 1735-1743.	30.7	300
2	Quantifying normal human brain metabolism using hyperpolarized [1–13C]pyruvate and magnetic resonance imaging. Neurolmage, 2019, 189, 171-179.	4.2	144
3	Imaging breast cancer using hyperpolarized carbon-13 MRI. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2092-2098.	7.1	138
4	Sodium homeostasis in the tumour microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188304.	7.4	69
5	Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0†T. Neurolmage, 2019, 195, 362-372.	4.2	67
6	A 3 T sodium and proton composite array breast coil. Magnetic Resonance in Medicine, 2014, 71, 2231-2242.	3.0	40
7	Magnetic resonance fingerprinting with dictionaryâ€based fat and water separation (DBFW MRF): A multiâ€component approach. Magnetic Resonance in Medicine, 2019, 81, 3032-3045.	3.0	39
8	Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Research and Therapy, 2019, 10, 25.	5.5	37
9	Phaseâ€sensitive sodium <i>B</i> ₁ mapping. Magnetic Resonance in Medicine, 2011, 65, 1125-1130.	3.0	29
10	Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nature Communications, 2022, 13, 466.	12.8	27
11	Deuterium metabolic imaging and hyperpolarized 13C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism. NeuroImage, 2022, 257, 119284.	4.2	27
12	Three dimensional MRF obtains highly repeatable and reproducible multi-parametric estimations in the healthy human brain at 1.5T and 3T. Neurolmage, 2021, 226, 117573.	4.2	26
13	Quantitative sodium magnetic resonance imaging of cartilage, muscle, and tendon. Quantitative Imaging in Medicine and Surgery, 2016, 6, 699-714.	2.0	25
14	Hyperpolarized Carbon-13 MRI for Early Response Assessment of Neoadjuvant Chemotherapy in Breast Cancer Patients. Cancer Research, 2021, 81, 6004-6017.	0.9	25
15	Creating a clinical platform for carbonâ€13 studies using the sodiumâ€23 and proton resonances. Magnetic Resonance in Medicine, 2020, 84, 1817-1827.	3.0	24
16	Sodium MRI radiofrequency coils for body imaging. NMR in Biomedicine, 2016, 29, 107-118.	2.8	23
17	The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Computerized Medical Imaging and Graphics, 2020, 86, 101793.	5.8	21
18	Hyperpolarized 13C-Pyruvate Metabolism as a Surrogate for Tumor Grade and Poor Outcome in Renal Cell Carcinoma—A Proof of Principle Study. Cancers, 2022, 14, 335.	3.7	18

#	Article	lF	CITATIONS
19	Visualization of sodium dynamics in the kidney by magnetic resonance imaging in a multi-site study. Kidney International, 2020, 98, 1174-1178.	5.2	17
20	How to Design Al-Driven Clinical Trials in Nuclear Medicine. Seminars in Nuclear Medicine, 2021, 51, 112-119.	4.6	17
21	Imaging Glioblastoma Metabolism by Using Hyperpolarized [1- ¹³ C]Pyruvate Demonstrates Heterogeneity in Lactate Labeling: A Proof of Principle Study. Radiology Imaging Cancer, 2022, 4, .	1.6	17
22	Design and Development of a Generalâ€Purpose Transmit/Receive (T/R) Switch for 3T <scp>MRI</scp> , Compatible for a Linear, Quadrature and Doubleâ€Tuned <scp>RF</scp> Coil. Concepts in Magnetic Resonance Part B, 2016, 46B, 56-65.	0.7	16
23	The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T1 relaxometry in patients with prostate cancer. Scientific Reports, 2020, 10, 20475.	3.3	16
24	Threeâ€Dimensional Surfaceâ€Based Analysis of Cartilage MRI Data in Knee Osteoarthritis: Validation and Initial Clinical Application. Journal of Magnetic Resonance Imaging, 2020, 52, 1139-1151.	3.4	15
25	A statistical analysis of the Bloch–Siegert <i>B</i> ₁ mapping technique. Physics in Medicine and Biology, 2013, 58, 5673-5691.	3.0	14
26	Feasibility of Quantitative Magnetic Resonance Fingerprinting in Ovarian Tumors for T ₁ and T ₂ Mapping in a PET/MR Setting. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 509-515.	3.7	13
27	Multiparametric MRI of early tumor response to immune checkpoint blockade in metastatic melanoma. , 2021, 9, e003125.		13
28	Ultra Short Echo Time MRI of Iron-Labelled Mesenchymal Stem Cells in an Ovine Osteochondral Defect Model. Scientific Reports, 2020, 10, 8451.	3.3	13
29	Sodium accumulation in breast cancer predicts malignancy and treatment response. British Journal of Cancer, 2022, 127, 337-349.	6.4	13
30	Synchronous radial ¹ H and ²³ Na dualâ€nuclear <scp>MRI</scp> on a clinical <scp>MRI</scp> system, equipped with a broadband transmit channel. Concepts in Magnetic Resonance Part B, 2016, 46B, 191-201.	0.7	12
31	Sodium MRI with 3D-cones as a measure of tumour cellularity in high grade serous ovarian cancer. European Journal of Radiology Open, 2019, 6, 156-162.	1.6	12
32	Magnetic resonance fingerprinting of the pancreas at 1.5ÂT and 3.0ÂT. Scientific Reports, 2020, 10, 17563.	3.3	12
33	Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study. European Radiology, 2021, 31, 5746-5758.	4.5	12
34	Imaging intralesional heterogeneity of sodium concentration in multiple sclerosis: Initial evidence from 23 Na-MRI. Journal of the Neurological Sciences, 2018, 387, 111-114.	0.6	10
35	Molecular imaging of the prostate: Comparing total sodium concentration quantification in prostate cancer and normal tissue using dedicated ¹³ C and ²³ Na endorectal coils. Journal of Magnetic Resonance Imaging, 2020, 51, 90-97.	3.4	9
36	Effectively Measuring Exerciseâ€Related Variations in T1Ï•and <scp>T2</scp> Relaxation Times of Healthy Articular Cartilage. Journal of Magnetic Resonance Imaging, 2020, 52, 1753-1764.	3.4	9

#	Article	IF	CITATIONS
37	T2* Measurement bias due to concomitant gradient fields. Magnetic Resonance in Medicine, 2017, 77, 1562-1572.	3.0	8
38	Evaluation of the sensitivity of R1ϕMRI to pH and macromolecular density. Magnetic Resonance Imaging, 2019, 58, 156-161.	1.8	7
39	Characterization and correction of centerâ€frequency effects in Xâ€nuclear eddy current compensations on a clinical MR system. Magnetic Resonance in Medicine, 2021, 85, 2370-2376.	3.0	7
40	Segmentation of knee MRI data with convolutional neural networks for semi-automated three-dimensional surface-based analysis of cartilage morphology and composition. Osteoarthritis lmaging, 2022, 2, 100010.	0.4	6
41	Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study. PLoS ONE, 2021, 16, e0245970.	2.5	5
42	Combined ²³ Na and ¹³ C imaging at 3.0ÂTesla using a singleâ€tuned large FOV birdcage coil. Magnetic Resonance in Medicine, 2021, 86, 1734-1745.	3.0	5
43	Quantitative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an exploratory, cross-sectional comparison between OA and healthy control knees. BMC Musculoskeletal Disorders, 2021, 22, 916.	1.9	5
44	Improving the quantitative classification of Erlenmeyer flask deformities. Skeletal Radiology, 2021, 50, 361-369.	2.0	3
45	Enhancing Distraction Osteogenesis With Carbon Fiber Reinforced Polyether Ether Ketone Bone Pins and a Three-Dimensional Printed Transfer Device to Permit Artifact-Free Three-Dimensional Magnetic Resonance Imaging. Journal of Craniofacial Surgery, 2021, 32, 360-364.	0.7	1
46	An improved <scp>RF</scp> and gradient coil system for high resolution in vivo guinea pig cochlea imaging on a 3T clinical magnet. Concepts in Magnetic Resonance Part B, 2014, 44, 89-101.	0.7	0
47	Editorial for "Diffusion Tensor Imaging for Quantitative Assessment of Anterior Cruciate Ligament Injury Grades and Graftâ€, Journal of Magnetic Resonance Imaging, 2020, 52, 1485-1486.	3.4	0
48	Fast Quantitative Magnetic Resonance Imaging. Synthesis Lectures on Biomedical Engineering, 2020, 15, i-124.	0.1	0