

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8163454/publications.pdf

Version: 2024-02-01

LIE VII

#	Article	IF	CITATIONS
1	Nano Carbon/Vertical Graphene/MnO ₂ Nanosheets Composite Particles for Highâ€Performance Supercapacitors. Energy Technology, 2022, 10, 2100884.	1.8	13
2	Anchoring Mo2C nanoparticles on vertical graphene nanosheets as a highly efficient catalytic interlayer for Li-S batteries. Chemical Engineering Journal, 2022, 433, 134306.	6.6	27
3	Nitrogen-doped porous carbon fiber/vertical graphene as an efficient polysulfide conversion catalyst for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 690-698.	5.2	14
4	Electrodeposition of Mo-doped NiFex nanospheres on 3D graphene fibers for efficient overall alkaline water splitting. International Journal of Hydrogen Energy, 2022, 47, 13850-13861.	3.8	9
5	Porous composites of vertical graphene sheets and Fe3O4 nanorods grown on Fe/Fe3C particle embedded graphene-structured carbon walls for highly efficient microwave absorption. Journal of Alloys and Compounds, 2022, 905, 164232.	2.8	15
6	Facile Gold-Nanoparticle Boosted Graphene Sensor Fabrication Enhanced Biochemical Signal Detection. Nanomaterials, 2022, 12, 1327.	1.9	2
7	Vertical Graphene Nanosheets on Porous Microsilicon Particles for Anodes of Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 8205-8213.	2.4	6
8	Atomicâ€5cale Laminated Structure of Oâ€Doped WS ₂ and Carbon Layers with Highly Enhanced Ion Transfer for Fastâ€Charging Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	8
9	Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon, 2021, 173, 477-484.	5.4	68
10	In-situ formation of 3D vertical graphene by carbonizing organic precursor in ammonia. Carbon, 2021, 171, 111-118.	5.4	12
11	A Self-Supported Flexible Electrode Based on Graphene Modified Carbon Cloth for Glucose Detection. , 2021, , .		Ο
12	Vapor-pressured induced synthesis of chemically bonded Fe1-xS/N-doped carbon composite nanoflakes as high-capacity, ultralong-cycle-life, and high-rate lithium-ion-battery anode. IOP Conference Series: Earth and Environmental Science, 2021, 680, 012077.	0.2	0
13	Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12, 1380.	5.8	194
14	Highly flexible and strong SiC fibre mats prepared by electrospinning and hot-drawing. Advances in Applied Ceramics, 2021, 120, 144-155.	0.6	2
15	Controlled Growth of Largeâ€Sized and Phaseâ€Selectivity 2D GaTe Crystals. Small, 2021, 17, e2007909.	5.2	9
16	High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes. Carbon, 2021, 176, 21-30.	5.4	35
17	Vertical Graphene Nanosheet/Polyimide Composite Films for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 7461-7470.	2.4	16
18	Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nature Communications, 2021, 12, 5260.	5.8	93

#	Article	IF	CITATIONS
19	Graphene-Based Flexible Sensors for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Frontiers in Bioengineering and Biotechnology, 2021, 9, 726071.	2.0	10
20	Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chemical Engineering Journal, 2021, 420, 129826.	6.6	31
21	Microspheres integrating Ti2O3 nanocrystals, carbon matrix, and vertical graphene enable fast ion transport for fast-charging lithium-ion batteries. Journal of Energy Storage, 2021, 43, 103179.	3.9	10
22	Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP. Journal of the European Ceramic Society, 2021, 41, 6859-6868.	2.8	14
23	Controlling structure of vertically grown graphene sheets on carbon fibers for hosting Li and Na metals as rechargeable battery anodes. Carbon, 2020, 158, 394-405.	5.4	16
24	Pressureâ€Induced Synthesis of Homogeneously Dispersed Sn/SnO ₂ /C Nanocomposites as Advanced Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901202.	1.8	3
25	Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47623-47633.	4.0	4
26	Nanoscopically and uniformly distributed SnO ₂ @TiO ₂ /C composite with highly mesoporous structure and bichemical bonds for enhanced lithium ion storage performances. Materials Advances, 2020, 1, 421-429.	2.6	13
27	Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. Journal of Power Sources, 2020, 465, 228206.	4.0	32
28	3D Vertical Graphene@SiO x /Bâ€Doped Carbon Composite Microspheres for Highâ€Energy Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 2000351.	1.8	8
29	Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Materials Today Energy, 2020, 17, 100445.	2.5	29
30	Highly emissive phenylene-expanded [5]radialene. Chemical Communications, 2020, 56, 3911-3914.	2.2	11
31	Vertical graphene growth on uniformly dispersed sub-nanoscale SiO _x /N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. Journal of Materials Chemistry A, 2020, 8, 3822-3833.	5.2	59
32	N,O-codoped 3D graphene fibers with densely arranged sharp edges as highly efficient electrocatalyst for oxygen reduction reaction. Journal of Materials Science, 2019, 54, 14495-14503.	1.7	15
33	Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. Journal of Power Sources, 2019, 414, 435-443.	4.0	58
34	Ultrathin MoS ₂ nanosheets homogenously embedded in aÂN,O-codoped carbon matrix for high-performance lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 4804-4812.	5.2	82
35	Synthesis of poly(1,5-diaminonaphthalene) microparticles with abundant amino and imino groups as strong adsorbers for heavy metal ions. Mikrochimica Acta, 2019, 186, 208.	2.5	12
36	Pressureâ€Induced Vapor Synthesis of Carbonâ€Encapsulated SiO _{<i>x</i>} /C Composite Spheres with Optimized Composition for Longâ€Life, Highâ€Rate, and Highâ€Arealâ€Capacity Lithiumâ€Ion Battery Ano Energy Technology, 2019, 7, 1900084.	des1.8	16

#	Article	IF	CITATIONS
37	3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1705380.	11.1	116
38	Tunable Free‧tanding Ultrathin Porous Nickel Film for High Performance Flexible Nickel–Metal Hydride Batteries. Advanced Energy Materials, 2018, 8, 1702467.	10.2	31
39	Substrate-orientation dependent epitaxial growth of highly ordered diamond nanosheet arrays by chemical vapor deposition. Nanoscale, 2018, 10, 2812-2819.	2.8	11
40	Pressure-induced vapor synthesis, formation mechanism, and thermal stability of well-dispersed boron nitride spheres. Diamond and Related Materials, 2018, 87, 10-17.	1.8	13
41	A Flexible Supercapacitor with High True Performance. IScience, 2018, 9, 138-148.	1.9	17
42	A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. Journal of Materials Chemistry A, 2018, 6, 11113-11118.	5.2	120
43	Vertically Aligned N-Doped Diamond/Graphite Hybrid Nanosheets Epitaxially Grown on B-Doped Diamond Films as Electrocatalysts for Oxygen Reduction Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 29866-29875.	4.0	10
44	Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Applied Materials Today, 2016, 3, 63-72.	2.3	49
45	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	1.7	42
46	Large-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors. Scientific Reports, 2016, 6, 20021.	1.6	63
47	MnO2 Nanosheets Grown on Internal Surface of Macroporous Carbon with Enhanced Electrochemical Performance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3641-3648.	3.2	33
48	A novel route towards well-dispersed short nanofibers and nanoparticles via electrospinning. RSC Advances, 2016, 6, 30139-30147.	1.7	10
49	Nanosheet-Structured Boron Nitride Spheres with a Versatile Adsorption Capacity for Water Cleaning. ACS Applied Materials & Interfaces, 2015, 7, 1824-1832.	4.0	117
50	Potential-mediated growth of ultrathin hydrated tungsten oxide nanosheets with high electrochemical activity from amorphous precursor nanofibers. Journal of Materials Science, 2015, 50, 66-73.	1.7	0
51	Synergistic enhancement of electrochemical performance of electrospun TiC/C hybrid nanofibers for supercapacitor application. Electrochimica Acta, 2015, 176, 402-409.	2.6	30
52	The effect of different nitrogen sources on the electrocatalytic properties of nitrogen-doped electrospun carbon nanofibers for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2015, 40, 4673-4682.	3.8	50
53	Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23307-23315.	5.2	77
54	Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy, 2014, 4, 39-48.	8.2	112

#	Article	IF	CITATIONS
55	Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochimica Acta, 2014, 149, 56-64.	2.6	61
56	Activated carbon with micrometer-scale channels prepared from luffa sponge fibers and their application for supercapacitors. RSC Advances, 2014, 4, 35789-35796.	1.7	42
57	Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Advances, 2014, 4, 31300-31307.	1.7	58
58	Enhanced electrochemical performance of TiO2 by Ti3+ doping using a facile solvothermal method as anode materials for lithium-ion batteries. Electrochimica Acta, 2014, 138, 41-47.	2.6	45
59	Effect of potassium chloride amount on structures of hydrothermally grown KNbO ₃ nanostructure. Materials Research Innovations, 2014, 18, S2-696-S2-699.	1.0	4
60	Enhancement of electrocatalytic activity for oxygen reduction reaction in alkaline and acid media from electrospun nitrogen-doped carbon nanofibers by surface modification. RSC Advances, 2013, 3, 15655.	1.7	32
61	Preparation of nitrogen-doped carbon submicrotubes by coaxial electrospinning and their electrocatalytic activity for oxygen reduction reaction in acid media. Electrochimica Acta, 2013, 96, 225-229.	2.6	32
62	Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale, 2013, 5, 4902.	2.8	112
63	Fe–N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions. Journal of Solid State Electrochemistry, 2013, 17, 565-573.	1.2	33
64	Crystallinity improvement of hexagonal boron nitride films by molybdenum catalysts during microwave plasma chemical vapor deposition and post-annealing. Applied Surface Science, 2012, 258, 10191-10194.	3.1	7
65	Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition. Nanoscale, 2012, 4, 120-123.	2.8	66
66	High electrochemical activity from hybrid materials of electrospun tungsten oxide nanofibers and carbon black. Journal of Materials Science, 2012, 47, 6607-6613.	1.7	13
67	Effects and Control of Polymerâ€Converted Carbon Impurity in Synthesizing Continuous Boron Nitride Nanofibers by Electrospinning. International Journal of Applied Ceramic Technology, 2012, 9, 823-832.	1.1	3
68	Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. Journal of Power Sources, 2011, 196, 9862-9867.	4.0	119
69	Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 7398-7404.	3.8	68
70	Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology, 2011, 22, 215602.	1.3	36
71	Fabrication of ultra thin and aligned carbon nanofibres from electrospun polyacrylonitrile nanofibres. Bulletin of Materials Science, 2010, 33, 553-559.	0.8	15
72	Vertically Aligned Boron Nitride Nanosheets: Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity. ACS Nano, 2010, 4, 414-422.	7.3	291

#	Article	IF	CITATIONS
73	Rapid synthesis and morphology control of nickel powders via a microwave-assisted chemical reduction method. Journal of Materials Science, 2009, 44, 108-113.	1.7	12
74	Large-Scale Production of Aligned Long Boron Nitride Nanofibers by Multijet/Multicollector Electrospinning. Journal of Physical Chemistry C, 2009, 113, 11228-11234.	1.5	71
75	Magnetization and Raman scattering studies of (Co,Mn) codoped ZnO nanoparticles. Journal of Applied Physics, 2008, 104, .	1.1	86
76	Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector. Applied Physics Letters, 2007, 91, .	1.5	45
77	Thermal Stability of Cubic Boron Nitride Films Deposited by Chemical Vapor Deposition. Journal of Physical Chemistry B, 2006, 110, 21073-21076.	1.2	19
78	Synthesis of thick and high quality cubic boron nitride films by r.f. bias assisted d.c. jet plasma chemical vapor deposition. Diamond and Related Materials, 2004, 13, 1704-1708.	1.8	20
79	Electron field emission from carbon nanoparticles prepared by microwave-plasma chemical-vapor deposition. Applied Physics Letters, 2001, 78, 2226-2228.	1.5	49
80	Growth and structure of aligned B–C–N nanotubes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 671.	1.6	7
81	Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers. Applied Physics Letters, 2000, 77, 1949-1951.	1.5	102
82	Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers. Applied Physics Letters, 2000, 76, 2624-2626.	1.5	104
83	Synthesis and characterization of B–C–N compounds on molybdenum. Journal of Materials Research, 1999, 14, 1137-1141.	1.2	15
84	Turbostratic boron carbonitride film and its field-emitting behavior. Applied Physics Letters, 1999, 74, 2948-2950.	1.5	42