Chen Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8163282/chen-zhou-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46
papers

3,177
citations

47
ext. papers

3,495
ext. citations

22
h-index

7.6
avg, IF

5.27
L-index

#	Paper	IF	Citations
46	Combination of Photothermal Conversion and Photocatalysis toward Water Purification. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 4579-4587	3.9	2
45	Renal-Clearable Dye-Conjugated Silver Nanoparticles for in Vivo Plasma Biothiol Sensing Through Urinalysis. <i>Sensors and Actuators B: Chemical</i> , 2022 , 131908	8.5	1
44	A new Ni-diaminoglyoxime-g-CN complex towards efficient photocatalytic ethanol splitting via a ligand-to-metal charge transfer (LMCT) mechanism. <i>Chemical Communications</i> , 2020 , 56, 7171-7174	5.8	9
43	Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13311-13319	13	20
42	Structurally Ordered [email[protected]3N4/GO Membranes toward Solar-Driven Freshwater Generation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 4362-4370	8.3	18
41	Renal Clearable Gold Nanoparticle-Functionalized Silk Film for Fluorescent Temperature Mapping. <i>Frontiers in Chemistry</i> , 2020 , 8, 364	5	3
40	Ternary noble-metal-free heterostructured NiStust3N4 with near-infrared response for enhanced photocatalytic hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 4084-	4694	21
39	Gold nanoparticles-biomembrane interactions: From fundamental to simulation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 196, 111312	6	21
3 8	Microwave-assisted synthesis of AuNPs/CdS composite nanorods for enhanced photocatalytic hydrogen evolution. <i>Journal of Materials Science</i> , 2019 , 54, 6930-6942	4.3	20
37	Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 102, 182-189	5.3	12
36	Synergistic Effect of Dual Particle-Size AuNPs on TiOlfor Efficient Photocatalytic Hydrogen Evolution. <i>Nanomaterials</i> , 2019 , 9,	5.4	11
35	In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. <i>Materials Letters</i> , 2019 , 240, 128-131	3.3	27
34	One-step synthesis of hierarchical AuNPs/Cd0.5Zn0.5S nanoarchitectures and their application as an efficient photocatalyst for hydrogen production. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 72, 338-345	6.3	12
33	Photoinitiated Interfacial Thiol-ene Click Chemistry for the Synthesis of Luminescent Hollow Polymer Colloids by Synchronously Anchoring CdTe Nanocrystals. <i>Chemistry Letters</i> , 2018 , 47, 1194-119	96 ^{1.7}	1
32	Luminescent gold nanoparticles as dual-modality sensors for selective copper (II) ion detection. <i>Materials Letters</i> , 2018 , 232, 70-73	3.3	7
31	Hydrogen Generation from Photoelectrochemical Water Splitting 2018 , 121-157		
3 0	Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. <i>Bioconjugate Chemistry</i> , 2018 , 29, 1841-1846	6.3	15

(2012-2017)

Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4314-4319	16.4	42
Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. <i>Angewandte Chemie</i> , 2017 , 129, 4378-4383	3.6	13
Glutathione-Mediated Cu(I)/Cu(II) Complexes: Valence-Dependent Effects on Clearance and In Vivo Imaging Application. <i>Nanomaterials</i> , 2017 , 7,	5.4	8
Single Ag Nanoparticle Spectroelectrochemistry via Dark-Field Scattering and Fluorescence Microscopies. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6760-6768	3.8	46
Glutathione-triggered luminescent silver nanoparticle: A urinary clearable nanoparticle for potential clinical practice. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 135, 751-755	6	12
Renal clearance and degradation of glutathione-coated copper nanoparticles. <i>Bioconjugate Chemistry</i> , 2015 , 26, 511-9	6.3	64
Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 11829-33	9.5	41
Surface-chemistry effect on cellular response of luminescent plasmonic silver nanoparticles. <i>Bioconjugate Chemistry</i> , 2014 , 25, 453-9	6.3	3
Luminescent gold nanoparticles: a new class of nanoprobes for biomedical imaging. <i>Experimental Biology and Medicine</i> , 2013 , 238, 1199-209	3.7	33
Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. <i>Materials Today</i> , 2013 , 16, 477-486	21.8	228
Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4978-81	16.4	460
A europium(III)-based PARACEST agent for sensing singlet oxygen by MRI. <i>Dalton Transactions</i> , 2013 , 42, 8066-9	4.3	31
Synthesis of five-membered osmacycloallenes and conversion into six-membered osmacycloallenes. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13361-4	16.4	16
PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12572-6	16.4	203
PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Near-IR-Emitting Gold Nanoparticles. <i>Angewandte Chemie</i> , 2013 , 125, 12804-12808	3.6	62
Synthesis and Characterization of Telluride Aerogels: Effect of Gelation on Thermoelectric Performance of Bi2Te3 and Bi2\(\mathbb{B}\)SbxTe3 Nanostructures. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 17431-17439	3.8	27
Near-Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. <i>Angewandte Chemie</i> , 2012 , 124, 10265-10269	3.6	45
Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angewandte Chemie - International Edition, 2012 , 51, 10118-22	16.4	155
	and Acidity Effects. Angewandte Chemie - International Edition, 2017, 56, 4314-4319 Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie, 2017, 129, 4378-4383 Glutathione-Mediated Cu(I)/Cu(II) Complexes: Valence-Dependent Effects on Clearance and In Vivo Imaging Application. Nanomaterials, 2017, 7, Single Ag Nanoparticle Spectroelectrochemistry via Dark-Field Scattering and Fluorescence Microscopies. Journal of Physical Chemistry C, 2015, 119, 6760-6768 Glutathione-triggered luminescent silver nanoparticle: A urinary clearable nanoparticle for potential clinical practice. Colloids and Surfaces B: Biointerfaces, 2015, 135, 751-755 Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjugate Chemistry, 2015, 26, 511-9 Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption. ACS Applied Materials & amp; Interfaces, 2014, 6, 11829-33 Surface-chemistry effect on cellular response of luminescent plasmonic silver nanoparticles. Bioconjugate Chemistry, 2014, 25, 453-9 Luminescent gold nanoparticles: a new class of nanoprobes for biomedical imaging. Experimental Biology and Medicine, 2013, 238, 1199-209 Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Materials Today, 2013, 16, 477-486 Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. Journal of the American Chemical Society, 2013, 135, 4978-81 A europium(III)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Transactions, 2013, 42, 8066-9 Synthesis of five-membered osmacycloallenes and conversion into six-membered osmacycloallenes. Angewandte Chemie - International Edition, 2013, 52, 12361-4 PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 12804-12	Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie, 2017, 129, 4378-4383 36 Glutathione-Mediated Cu(I)/Cu(II) Complexes: Valence-Dependent Effects on Clearance and In Vivo Imaging Application. Nanomaterials, 2017, 7; Single Ag Nanoparticle Spectroelectrochemistry via Dark-Field Scattering and Fluorescence Microscopies. Journal of Physical Chemistry C, 2015, 119, 6760-6768 38 Glutathione-triggered luminescent silver nanoparticle: A urinary clearable nanoparticle for potential clinical practice. Colloids and Surfaces B: Biointerfaces, 2015, 135, 751-755 6 Glutathione-triggered luminescent silver nanoparticles: a surface ligand for minimizing serum protein adsorption. ACS Applied Materials & Samp: Interfaces, 2014, 6, 11829-33 Surface-chemistry, 2015, 26, 511-9 Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption. ACS Applied Materials & Samp: Interfaces, 2014, 6, 11829-33 Surface-chemistry effect on cellular response of luminescent plasmonic silver nanoparticles. Bioconjugate Chemistry, 2014, 25, 453-9 Luminescent gold nanoparticles: a new class of nanoprobes for biomedical imaging. Experimental Biology and Medicine, 2013, 238, 1199-209 Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Materials Today, 218 218 Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. Journal of the American Chemical Society, 2013, 135, 4978-81 A europium(III)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Transactions, 2013, 42, 8066-9 Synthesis of five-membered osmacycloallenes and conversion into six-membered osmacycloallenes. Angewandte Chemie - International Edition, 2013, 52, 13361-4 PEGylation and zwitterionization: pros and cons in the Renal Clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angewandte Chemie - International Edition, 2013,

11	One-step interfacial synthesis and assembly of ultrathin luminescent AuNPs/silica membranes. <i>Advanced Materials</i> , 2012 , 24, 3218-22	24	29
10	Different sized luminescent gold nanoparticles. <i>Nanoscale</i> , 2012 , 4, 4073-83	7.7	493
9	Grain size effects in polycrystalline gold nanoparticles. <i>Nanoscale</i> , 2012 , 4, 4228-33	7.7	43
8	Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compounds. <i>Carbon</i> , 2012 , 50, 1298-1302	10.4	57
7	Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere. <i>Physics of Plasmas</i> , 2012 , 19, 0729	9 6 4	2
6	Decomposition of Amino Acids Catalyzed by Plasmonic Gold Nanoparticles. <i>Science of Advanced Materials</i> , 2012 , 4, 813-818	2.3	2
5	Luminescent gold nanoparticles with pH-dependent membrane adsorption. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11014-7	16.4	166
4	Luminescent Gold Nanoparticles with Efficient Renal Clearance. <i>Angewandte Chemie</i> , 2011 , 123, 3226-3	236	90
3	Luminescent gold nanoparticles with efficient renal clearance. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3168-72	16.4	348
2	Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes. <i>Nanotechnology</i> , 2011 , 22, 065601	3.4	4
1	Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au (I) Thiolates. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7727-7732	3.8	253