Gisbert Schneider

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/816294/gisbert-schneider-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,862 65 119 452 h-index g-index citations papers 6.8 7.38 21,754 515 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
452	De Novo Molecular Design with Chemical Language Models. <i>Methods in Molecular Biology</i> , 2022 , 2390, 207-232	1.4	1
451	Perplexity-Based Molecule Ranking and Bias Estimation of Chemical Language Models <i>Journal of Chemical Information and Modeling</i> , 2022 ,	6.1	4
450	EQuantum machine-learning for medicinal chemistry Physical Chemistry Chemical Physics, 2022,	3.6	4
449	Identification of novel off targets of baricitinib and tofacitinib by machine learning with a focus on thrombosis and viral infection <i>Scientific Reports</i> , 2022 , 12, 7843	4.9	1
448	TBIO-08. The molecular basis for rational targeting of FGFR-driven growth and invasiveness in pediatric brain tumors. <i>Neuro-Oncology</i> , 2022 , 24, i184-i184	1	
447	QMugs, quantum mechanical properties of drug-like molecules. Scientific Data, 2022, 9,	8.2	4
446	Geometric deep learning on molecular representations. <i>Nature Machine Intelligence</i> , 2021 , 3, 1023-1032	2 22.5	15
445	Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 5256-5268	6.1	
444	Artificial intelligence in drug discovery: recent advances and future perspectives. <i>Expert Opinion on Drug Discovery</i> , 2021 , 16, 949-959	6.2	27
443	POS0091 OFF-TARGET PROFILING OF JANUS KINASE (JAK) INHIBITORS IN RHEUMATOID ARTHRITIS: A COMPUTER-BASED APPROACH FOR DRUG SAFETY STUDIES AND REPURPOSING. <i>Annals of the Rheumatic Diseases</i> , 2021 , 80, 255.2-255	2.4	
442	Combining generative artificial intelligence and on-chip synthesis for de novo drug design. <i>Science Advances</i> , 2021 , 7,	14.3	15
441	Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design. <i>Advanced Science</i> , 2021 , 8, e2100832	13.6	5
440	Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19477-19482	16.4	7
439	High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
438	Engineering of a functional Eocopherol transfer protein. <i>Redox Biology</i> , 2021 , 38, 101773	11.3	1
437	Molecular Scaffold Hopping via Holistic Molecular Representation. <i>Methods in Molecular Biology</i> , 2021 , 2266, 11-35	1.4	3
436	Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment. Journal of Chemical Information and Modeling, 2021 , 61, 1083-1094	6.1	10

435	Beam-Search zum automatisierten Entwurf und Scoring neuer ROR-Liganden mithilfe maschineller Intelligenz**. <i>Angewandte Chemie</i> , 2021 , 133, 19626-19632	3.6	
434	Bioaffinity Screening with a Rapid and Sample-Efficient Autosampler for Native Electrospray Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2021 , 93, 13342-13350	7.8	O
433	A critical overview of computational approaches employed for COVID-19 drug discovery. <i>Chemical Society Reviews</i> , 2021 , 50, 9121-9151	58.5	36
432	Introducing the CSP Analyzer: A novel Machine Learning-based application for automated analysis of two-dimensional NMR spectra in NMR fragment-based screening. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 603-611	6.8	6
431	Virtual Screening and Design with Machine Intelligence Applied to Pim-1 Kinase Inhibitors. <i>Molecular Informatics</i> , 2020 , 39, e2000109	3.8	5
430	Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis. <i>Antimicrobial Agents and Chemotherapy</i> , 2020 , 64,	5.9	8
429	Generative molecular design in low data regimes. <i>Nature Machine Intelligence</i> , 2020 , 2, 171-180	22.5	44
428	Shape Similarity by Fractal Dimensionality: An Application in the de novo Design of (-)-Englerin A Mimetics. <i>ChemMedChem</i> , 2020 , 15, 566-570	3.7	3
427	Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. <i>MAbs</i> , 2020 , 12, 1736975	6.6	3
426	A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. <i>Scientific Reports</i> , 2020 , 10, 10563	4.9	5
425	AI reflections in 2019. Nature Machine Intelligence, 2020 , 2, 2-9	22.5	1
424	Bidirectional Molecule Generation with Recurrent Neural Networks. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 1175-1183	6.1	39
423	Rethinking drug design in the artificial intelligence era. <i>Nature Reviews Drug Discovery</i> , 2020 , 19, 353-36	5464.1	179
422	Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. <i>Toxicon</i> , 2020 , 175, 36-43	2.8	2
421	Drug discovery with explainable artificial intelligence. <i>Nature Machine Intelligence</i> , 2020 , 2, 573-584	22.5	116
420	Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides. <i>Biochemistry</i> , 2020 , 59, 3772-3781	3.2	2
419	Identification of Synthetic Activators of Cancer Cell Migration by Hybrid Deep Learning. <i>ChemBioChem</i> , 2020 , 21, 500-507	3.8	О
418	SIG-02. RATIONAL TARGETING OF PRO-INVASIVE FGFR SIGNALING IN MEDULLOBLASTOMA. Neuro-Oncology, 2019 , 21, ii113-ii113	1	1

417	Identification of Chemokine Ligands by Biochemical Fragmentation and Simulated Peptide Evolution. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7138-7142	16.4	1
416	Design of Natural-Product-Inspired Multitarget Ligands by Machine Learning. <i>ChemMedChem</i> , 2019 , 14, 1129-1134	3.7	21
415	De novo design of anticancer peptides by ensemble artificial neural networks. <i>Journal of Molecular Modeling</i> , 2019 , 25, 112	2	25
414	Automated De Novo Drug Design: Are We Nearly There Yet?. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10792-10803	16.4	60
413	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie, 2019, 131, 10906-10)9 3. T	9
412	In silico design and optimization of selective membranolytic anticancer peptides. <i>Scientific Reports</i> , 2019 , 9, 11282	4.9	23
411	Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. <i>Chemical Reviews</i> , 2019 , 119, 10520-10594	68.1	243
410	Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. <i>Nature Machine Intelligence</i> , 2019 , 1, 307-315	22.5	30
409	Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by first-principles interaction free energies. <i>Journal of Cheminformatics</i> , 2019 , 11, 59	8.6	8
408	Identifizierung von Chemokinliganden durch biochemische Rezeptorfragmentierung und simulierte Peptidevolution. <i>Angewandte Chemie</i> , 2019 , 131, 7212-7216	3.6	
407	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Molecular Design With Long Short-Term Memory Networks. <i>Journal of Computer Aided Chemistry</i> , 2019 , 20, 35-42	0.2	
406	Molecular Design with Generative Long Short-term Memory. <i>Chimia</i> , 2019 , 73, 1006-1011	1.3	12
405	Synthetic Activators of Cell Migration Designed by Constructive Machine Learning. <i>ChemistryOpen</i> , 2019 , 8, 1303-1308	2.3	6
404	Discovery of Novel Molecular Frameworks of Farnesoid X Receptor Modulators by Ensemble Machine Learning. <i>ChemistryOpen</i> , 2019 , 8, 3	2.3	O
403	Discovery of Novel Molecular Frameworks of Farnesoid X Receptor Modulators by Ensemble Machine Learning. <i>ChemistryOpen</i> , 2019 , 8, 7-14	2.3	1
402	In Silico Target Prediction for Small Molecules. <i>Methods in Molecular Biology</i> , 2019 , 1888, 273-309	1.4	15
401	Simulated Molecular Evolution for Anticancer Peptide Design. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1674-1678	16.4	10
400	Simulated Molecular Evolution for Anticancer Peptide Design. <i>Angewandte Chemie</i> , 2019 , 131, 1688-16	93 .6	

399	Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths. <i>Molecular Informatics</i> , 2019 , 38, e1800115	3.8	7
398	Designing Anticancer Peptides by Constructive Machine Learning. <i>ChemMedChem</i> , 2018 , 13, 1300-1302	3.7	44
397	Future Perspectives of Computational Drug Design 2018 , 405-416		
396	Recurrent Neural Network Model for Constructive Peptide Design. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 472-479	6.1	90
395	De Novo Design of Bioactive Small Molecules by Artificial Intelligence. <i>Molecular Informatics</i> , 2018 , 37, 1700153	3.8	155
394	Total Synthesis of Ripostatin B and Structure-Activity Relationship Studies on Ripostatin Analogs. Journal of Organic Chemistry, 2018 , 83, 7150-7172	4.2	17
393	Binding Specificities of NanobodyMembrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. <i>Analytical Chemistry</i> , 2018 , 90, 5306-5313	7.8	8
392	Generative Recurrent Networks for De Novo Drug Design. <i>Molecular Informatics</i> , 2018 , 37, 1700111	3.8	184
391	Quantification of hydrolyzed peptides and proteins by amino acid fluorescence. <i>Journal of Peptide Science</i> , 2018 , 24, e3113	2.1	9
390	Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer-Ligand Interactions: From Mechanism to Binding Constants. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7486-7497	16.4	33
389	Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MedChemComm, 2018 , 9, 1538-1546	5	13
388	Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity. <i>Communications Chemistry</i> , 2018 , 1,	6.3	29
387	Scaffold hopping from synthetic RXR modulators by virtual screening and design. <i>MedChemComm</i> , 2018 , 9, 1289-1292	5	13
386	Computer-Assisted Discovery of Retinoid X Receptor Modulating Natural Products and Isofunctional Mimetics. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 5442-5447	8.3	28
385	Automating drug discovery. <i>Nature Reviews Drug Discovery</i> , 2018 , 17, 97-113	64.1	275
384	Scaffold-Hopping from Synthetic Drugs by Holistic Molecular Representation. <i>Scientific Reports</i> , 2018 , 8, 16469	4.9	17
383	Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. <i>Communications Chemistry</i> , 2018 , 1,	6.3	44
382	MetScore: Site of Metabolism Prediction Beyond Cytochrome P450 Enzymes. <i>ChemMedChem</i> , 2018 , 13, 2281-2289	3.7	17

381	Polypharmacological Drug-target Inference for Chemogenomics. <i>Molecular Informatics</i> , 2018 , 37, e1800	0,580	6
3 80	Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways. <i>Cell Chemical Biology</i> , 2018 , 25, 1095-1106.e23	8.2	10
379	Hybrid Network Model for "Deep Learning" of Chemical Data: Application to Antimicrobial Peptides. <i>Molecular Informatics</i> , 2017 , 36, 1600011	3.8	31
378	De-orphaning the marine natural product (\boxminus)-marinopyrrole A by computational target prediction and biochemical validation. <i>Chemical Communications</i> , 2017 , 53, 2272-2274	5.8	27
377	modlAMP: Python for antimicrobial peptides. <i>Bioinformatics</i> , 2017 , 33, 2753-2755	7.2	46
376	Exploring the Structural Space of the Galectin-1-Ligand Interaction. <i>ChemBioChem</i> , 2017 , 18, 1477-1481	3.8	2
375	Privileged Structures Revisited. Angewandte Chemie - International Edition, 2017, 56, 7971-7974	16.4	61
374	Active learning for computational chemogenomics. Future Medicinal Chemistry, 2017, 9, 381-402	4.1	54
373	Site of Metabolism Prediction Based on ab initio Derived Atom Representations. <i>ChemMedChem</i> , 2017 , 12, 606-612	3.7	19
372	Macromolecular target prediction by self-organizing feature maps. <i>Expert Opinion on Drug Discovery</i> , 2017 , 12, 271-277	6.2	22
371	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. <i>Angewandte Chemie</i> , 2017 , 129, 13201-13205	3.6	4
370	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13021-13025	16.4	17
369	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11520-11524	16.4	33
368	Peptide-Membrane Interaction between Targeting and Lysis. ACS Chemical Biology, 2017, 12, 2254-2259	4.9	10
367	Privilegierte Strukturen neu betrachtet. <i>Angewandte Chemie</i> , 2017 , 129, 8079-8083	3.6	8
366	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. <i>Angewandte Chemie</i> , 2017 , 129, 11678-11682	3.6	7
365	Rational Design of Membrane-Pore-Forming Peptides. <i>Small</i> , 2017 , 13, 1701316	11	17
364	Characterisation of anticancer peptides at the single-cell level. <i>Lab on A Chip</i> , 2017 , 17, 2933-2940	7.2	21

(2016-2017)

363	Matrix-based Molecular Descriptors for Prospective Virtual Compound Screening. <i>Molecular Informatics</i> , 2017 , 36, 1600091	3.8	16
362	Scoring of de novo Designed Chemical Entities by Macromolecular Target Prediction. <i>Molecular Informatics</i> , 2017 , 36, 1600110	3.8	5
361	New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. <i>Oncotarget</i> , 2017 , 8, 1007-1022	3.3	19
360	The quantum chemical search for novel materials and the issue of data processing: The InfoMol project. <i>Journal of Computational Science</i> , 2016 , 15, 65-73	3.4	3
359	Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. <i>Scientific Reports</i> , 2016 , 6, 23264	4.9	56
358	Membranolytic anticancer peptides. <i>MedChemComm</i> , 2016 , 7, 2232-2245	5	44
357	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. <i>Angewandte Chemie</i> , 2016 , 128, 12596-12599	3.6	2
356	Coping with Complexity in Ligand-Based De Novo Design. ACS Symposium Series, 2016, 143-158	0.4	1
355	Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. <i>Gut Pathogens</i> , 2016 , 8, 29	5.4	19
354	Von komplexen Naturstoffen zu synthetisch leicht zugfiglichen Mimetika mithilfe von computergestfiztem De-novo-Design. <i>Angewandte Chemie</i> , 2016 , 128, 6901-6904	3.6	11
353	From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6789-92	16.4	36
352	Robust molecular representations for modelling and design derived from atomic partial charges. <i>Chemical Communications</i> , 2016 , 52, 681-4	5.8	23
351	De Novo Design at the Edge of Chaos. Journal of Medicinal Chemistry, 2016, 59, 4077-86	8.3	81
350	Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. <i>Chemical Science</i> , 2016 , 7, 3919-3927	9.4	35
349	Spotting and designing promiscuous ligands for drug discovery. <i>Chemical Communications</i> , 2016 , 52, 1135-8	5.8	27
348	Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. <i>Molecular Microbiology</i> , 2016 , 99, 925-44	4.1	48
347	Counting on natural products for drug design. <i>Nature Chemistry</i> , 2016 , 8, 531-41	17.6	592
346	Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships. <i>Molecular Informatics</i> , 2016 , 35, 606-614	3.8	12

345	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12408-11	16.4	26
344	Designing Multi-target Compound Libraries with Gaussian Process Models. <i>Molecular Informatics</i> , 2016 , 35, 192-8	3.8	5
343	Deep Learning in Drug Discovery. <i>Molecular Informatics</i> , 2016 , 35, 3-14	3.8	360
342	Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1551-5	16.4	36
341	In Silico Screening 2015 , 141-160		0
340	Chemography of natural product space. <i>Planta Medica</i> , 2015 , 81, 429-35	3.1	23
339	Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties. <i>Bioorganic and Medicinal Chemistry</i> , 2015 , 23, 3490-8	3.4	15
338	Predicting drug metabolism: experiment and/or computation?. <i>Nature Reviews Drug Discovery</i> , 2015 , 14, 387-404	64.1	255
337	Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. <i>Chemical Communications</i> , 2015 , 51, 7478-81	5.8	10
336	Multidimensional Design of Anticancer Peptides. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10370-4	16.4	28
335	Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. <i>Pharmacological Research</i> , 2015 , 102, 53-60	10.2	12
334	Multidimensional De Novo Design Reveals 5-HT2B Receptor-Selective Ligands. <i>Angewandte Chemie</i> , 2015 , 127, 1571-1575	3.6	8
333	Active-learning strategies in computer-assisted drug discovery. <i>Drug Discovery Today</i> , 2015 , 20, 458-65	8.8	108
332	Attractors in Sequence Space: Peptide Morphing by Directed Simulated Evolution. <i>Molecular Informatics</i> , 2015 , 34, 709-714	3.8	5
331	Computer-assisted quantification of motile and invasive capabilities of cancer cells. <i>Scientific Reports</i> , 2015 , 5, 15338	4.9	13
330	Revealing the Macromolecular Targets of Fragment-Like Natural Products. <i>Angewandte Chemie</i> , 2015 , 127, 10662-10666	3.6	19
329	De-novo-Fragmententwurf fil die Wirkstoffforschung und chemische Biologie. <i>Angewandte Chemie</i> , 2015 , 127, 15294-15298	3.6	5
328	Aryl Bis-Sulfonamide Inhibitors of IspF from Arabidopsis thaliana and Plasmodium falciparum. <i>ChemMedChem</i> , 2015 , 10, 2090-8	3.7	15

(2014-2015)

327	De Novo Fragment Design for Drug Discovery and Chemical Biology. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15079-83	16.4	25
326	Fragment-Based De Novo Design Reveals a Small-Molecule Inhibitor of Helicobacter Pylori HtrA. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10244-8	16.4	28
325	Revealing the Macromolecular Targets of Fragment-Like Natural Products. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10516-20	16.4	47
324	Fragment-Based De Novo Design Reveals a Small-Molecule Inhibitor of Helicobacter Pylori HtrA. <i>Angewandte Chemie</i> , 2015 , 127, 10382-10386	3.6	6
323	Mehrdimensionaler Entwurf von Antikrebspeptiden. <i>Angewandte Chemie</i> , 2015 , 127, 10512-10516	3.6	2
322	Structural insights on cholesterol endosynthesis: Binding of squalene and 2,3-oxidosqualene to supernatant protein factor. <i>Journal of Structural Biology</i> , 2015 , 190, 261-70	3.4	19
321	Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein. <i>EBioMedicine</i> , 2015 , 2, 386-95	8.8	7
320	Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. <i>Nature Chemistry</i> , 2015 , 7, 241-9	17.6	143
319	In Silico Adoption of an Orphan Nuclear Receptor NR4A1. PLoS ONE, 2015, 10, e0135246	3.7	5
318	Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4067-72	11.5	169
317	Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. <i>ChemMedChem</i> , 2014 , 9, 1880-91	3.7	34
316	Future De Novo Drug Design. <i>Molecular Informatics</i> , 2014 , 33, 397-402	3.8	22
315	Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 582-5	16.4	60
314	Accessing new chemical entities through microfluidic systems. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5750-8	16.4	76
313	Identifizierung von Pyrrolopyrazinen als polypotente Liganden mit Antimalariawirkung. <i>Angewandte Chemie</i> , 2014 , 126, 7199-7204	3.6	2
312	Fractal Dimensions of Macromolecular Structures. <i>Molecular Informatics</i> , 2014 , 33, 588-596	3.8	9
311	Revealing the macromolecular targets of complex natural products. <i>Nature Chemistry</i> , 2014 , 6, 1072-8	17.6	100
310	Inhibiting HtrA protease by addressing a computationally predicted allosteric ligand binding site. <i>Chemical Science</i> , 2014 , 5, 3583-3590	9.4	22

309	Multi-objective molecular de novo design by adaptive fragment prioritization. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4244-8	16.4	63
308	Vanillin-derived antiproliferative compounds influence Plk1 activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 5063-9	2.9	11
307	Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 8035-55	8.3	42
306	Peptide lineup against Gram-negative bacterial infection [first-in-class peptide inhibitor of H. pylori HtrA. <i>Journal of Cheminformatics</i> , 2014 , 6,	8.6	78
305	Target prediction by cascaded self-organizing maps for ligand de-orphaning and side-effect investigation. <i>Journal of Cheminformatics</i> , 2014 , 6,	8.6	78
304	Identification of pirinixic acid derivatives bearing a 2-aminothiazole moiety combines dual PPARH/II activation and dual 5-LO/mPGES-1 inhibition. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 3757	-63	10
303	Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 987-91	6.1	23
302	Anthranilic acid derivatives as novel ligands for farnesoid X receptor (FXR). <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 2447-60	3.4	24
301	Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7079-84	16.4	27
300	Breaking the data barrier in computational medicinal chemistry. <i>Future Medicinal Chemistry</i> , 2014 , 6, 245-6	4.1	Ο
299	Combinatorial chemistry by ant colony optimization. Future Medicinal Chemistry, 2014, 6, 267-80	4.1	15
298	Kombination von On-Chip-Synthese einer fokussierten kombinatorischen Bibliothek mit computergestEzter Vorhersage der biologischen AktivitEenth[lt Imidazopyridine als GPCR-Liganden. <i>Angewandte Chemie</i> , 2014 , 126, 593-596	3.6	15
297	Mehrdimensionales De-novo-Molekldesign durch adaptive Fragmentauswahl. <i>Angewandte Chemie</i> , 2014 , 126, 4330-4334	3.6	8
296	Neue chemische Strukturen durch Mikrofluidiksysteme. <i>Angewandte Chemie</i> , 2014 , 126, 5858-5866	3.6	12
295	Flashback Forward: Reaction-Driven De Novo Design of Bioactive Compounds. <i>Synlett</i> , 2014 , 25, 170-17	& .2	11
294	Machine learning estimates of natural product conformational energies. <i>PLoS Computational Biology</i> , 2014 , 10, e1003400	5	26
293	Coping with polypharmacology by computational medicinal chemistry. <i>Chimia</i> , 2014 , 68, 648-53	1.3	6
292	Piloting the membranolytic activities of peptides with a self-organizing map. <i>ChemBioChem</i> , 2014 , 15, 2225-31	3.8	8

(2013-2013)

291	Steering target selectivity and potency by fragment-based de novo drug design. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10006-9	16.4	22
2 90	De Novo Design: From Models to Molecules 2013 , 1-55		9
289	Pharmacophore-Based De Novo Design 2013 , 201-214		
288	Ligand-Based Molecular Design Using Pseudoreceptors 2013 , 227-244		O
287	Bioisosteres in De Novo Design 2013 , 417-435		1
286	Fragment-Based Design of Focused Compound Libraries 2013 , 349-371		2
285	Construction of Drug-Like Compounds by Markov Chains 2013 , 311-323		
284	Structure-Based De Novo Drug Design 2013 , 97-124		4
283	Hit and Lead Identification from Fragments 2013 , 143-200		1
282	3D-QSAR Approaches to De Novo Drug Design 2013 , 215-225		
281	Reaction-Driven De Novo Design: a Keystone for Automated Design of Target Family-Oriented Libraries 2013 , 245-266		2
280	Peptide Design by Nature-Inspired Algorithms 2013 , 437-465		2
279	Free Energy Methods in Ligand Design 2013 , 373-415		1
278	Coping with Combinatorial Space in Molecular Design 2013 , 325-347		3
277	De Novo Design of Ligands against Multitarget Profiles 2013 , 287-309		
276	Multiobjective De Novo Design of Synthetically Accessible Compounds 2013, 267-285		5
275	Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 9031-44	8.3	52
274	Exhaustive proteome mining for functional MHC-I ligands. ACS Chemical Biology, 2013, 8, 1876-81	4.9	10

273	Common non-epigenetic drugs as epigenetic modulators. <i>Trends in Molecular Medicine</i> , 2013 , 19, 742-5	311.5	54
272	Drugs by numbers: reaction-driven de novo design of potent and selective anticancer leads. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4676-81	16.4	20
271	CATS for Scaffold Hopping in Medicinal Chemistry. <i>Methods and Principles in Medicinal Chemistry</i> , 2013 , 119-130	0.4	
270	De novo design - hop(p)ing against hope. <i>Drug Discovery Today: Technologies</i> , 2013 , 10, e453-60	7.1	26
269	Computational Resources for MHC Ligand Identification. <i>Molecular Informatics</i> , 2013 , 32, 326-36	3.8	6
268	De novo design and optimization of Aurora A kinase inhibitors. <i>Chemical Science</i> , 2013 , 4, 1229	9.4	22
267	Quinolin-4(1H)-imines are potent antiplasmodial drugs targeting the liver stage of malaria. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 4811-5	8.3	18
266	Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. <i>Bioorganic and Medicinal Chemistry</i> , 2013 , 21, 7874-83	3.4	14
265	Adaptive peptide design. Chimia, 2013, 67, 859-63	1.3	3
264	Scrutinizing MHC-I binding peptides and their limits of variation. <i>PLoS Computational Biology</i> , 2013 , 9, e1003088	5	28
263	Chemically Advanced Template Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for 'Orphan' Molecules. <i>Molecular Informatics</i> , 2013 , 32, 133-138	3.8	109
262	Pharmacophore Alignment Search Tool (PhAST): Significance Assessment of Chemical Similarity. <i>Molecular Informatics</i> , 2013 , 32, 625-46	3.8	2
261	Wirkstoffe nach Zahlen: reaktionsbasierter De-novo-Entwurf von potenten und selektiven Leitstrukturen fildie Krebsforschung. <i>Angewandte Chemie</i> , 2013 , 125, 4774-4779	3.6	9
260	Steering Target Selectivity and Potency by Fragment-Based De Novo Drug Design. <i>Angewandte Chemie</i> , 2013 , 125, 10190-10193	3.6	7
259	Molecular characterization of EP6a novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. <i>Biochemical Pharmacology</i> , 2012 , 83, 228-40	6	24
258	Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. <i>Journal of Molecular Graphics and Modelling</i> , 2012 , 34, 108-17	2.8	55
257	Virtual screening for compounds that mimic protein-protein interface epitopes. <i>Journal of Computational Chemistry</i> , 2012 , 33, 573-9	3.5	14
256	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. <i>Molecular Informatics</i> , 2012 , 31, 21-6	3.8	10

255	Identifizierung eines immunsuppressiven Wirkstoffmolek durch strukturbasiertes virtuelles Screening nach Inhibitoren von Protein-Protein-Wechselwirkungen. <i>Angewandte Chemie</i> , 2012 , 124, 264	1-268	7
254	Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein-protein interactions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 258-61	16.4	31
253	Designing the molecular future. Journal of Computer-Aided Molecular Design, 2012, 26, 115-20	4.2	13
252	Perspectives from Medicinal Chemistry 2012 , 217-230		2
251	Significance estimation for sequence-based chemical similarity searching (PhAST) and application to AuroraA kinase inhibitors. <i>Future Medicinal Chemistry</i> , 2012 , 4, 1897-906	4.1	4
250	Discovery of Elecretase modulators with a novel activity profile by text-based virtual screening. <i>ACS Chemical Biology</i> , 2012 , 7, 1488-95	4.9	4
249	Molecular pharmacological profile of a novel thiazolinone-based direct and selective 5-lipoxygenase inhibitor. <i>British Journal of Pharmacology</i> , 2012 , 165, 2304-13	8.6	12
248	Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks. <i>Journal of Chemical Information and Modeling</i> , 2012 , 52, 1167-78	6.1	36
247	Structure-activity relationship of nonacidic quinazolinone inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1). <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 3792-803	8.3	46
246	Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) by combining a chemical library screen with computer-based virtual screening. <i>Journal of Biological Chemistry</i> , 2012 , 287, 33001-13	5.4	23
245	Sequential anti-cytomegalovirus response monitoring may allow prediction of cytomegalovirus reactivation after allogeneic stem cell transplantation. <i>PLoS ONE</i> , 2012 , 7, e50248	3.7	27
244	Discovery of small-molecule interleukin-2 inhibitors from a DNA-encoded chemical library. <i>Chemistry - A European Journal</i> , 2012 , 18, 7729-37	4.8	83
243	DOGS: reaction-driven de novo design of bioactive compounds. <i>PLoS Computational Biology</i> , 2012 , 8, e1002380	5	151
242	Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2665-74	11.5	57
241	Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. <i>Journal of Biological Chemistry</i> , 2012 , 287, 10115-10120	5.4	122
240	From theory to bench experiment by computer-assisted drug design. <i>Chimia</i> , 2012 , 66, 120-4	1.3	4
239	Designing antimicrobial peptides: form follows function. <i>Nature Reviews Drug Discovery</i> , 2011 , 11, 37-51	64.1	1190
238	Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. <i>Future Medicinal Chemistry</i> , 2011 , 3, 415-24	4.1	29

237	A class of 5-benzylidene-2-phenylthiazolinones with high potency as direct 5-lipoxygenase inhibitors. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 1943-7	8.3	27
236	Sorting Potential Therapeutic Targets in Apicomplexa 2011 , 35-51		
235	Computational medicinal chemistry. Future Medicinal Chemistry, 2011, 3, 393-4	4.1	5
234	Discovery and biological evaluation of a novel class of dual microsomal prostaglandin E2 synthase-1/5-lipoxygenase inhibitors based on 2-[(4,6-diphenethoxypyrimidin-2-yl)thio]hexanoic acid. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 4490-507	8.3	29
233	Target Profile Prediction and Practical Evaluation of a Biginelli-Type Dihydropyrimidine Compound Library. <i>Pharmaceuticals</i> , 2011 , 4, 1236-1247	5.2	11
232	Inhibitors of Helicobacter pylori protease HtrA found by 'virtual ligand' screening combat bacterial invasion of epithelia. <i>PLoS ONE</i> , 2011 , 6, e17986	3.7	47
231	Bioassays to monitor Taspase1 function for the identification of pharmacogenetic inhibitors. <i>PLoS ONE</i> , 2011 , 6, e18253	3.7	24
230	Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors. <i>PLoS ONE</i> , 2011 , 6, e21554	3.7	6
229	Advanced flowcytometric analysis of regulatory T cells: CD127 downregulation early post stem cell transplantation and altered Treg/CD3(+)CD4(+)-ratio in severe GvHD or relapse. <i>Journal of Immunological Methods</i> , 2011 , 373, 36-44	2.5	21
228	Structural properties of so-called NSAID-phospholipid-complexes. <i>European Journal of Pharmaceutical Sciences</i> , 2011 , 44, 103-16	5.1	33
227	A collection of robust organic synthesis reactions for in silico molecule design. <i>Journal of Chemical Information and Modeling</i> , 2011 , 51, 3093-8	6.1	69
226	Enabling future drug discovery by de novo design. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2011 , 1, 742-759	7.9	51
225	Local neighborhood behavior in a combinatorial library context. <i>Journal of Computer-Aided Molecular Design</i> , 2011 , 25, 237-52	4.2	9
224	Visualization and virtual screening in molecular property spaces. <i>Journal of Cheminformatics</i> , 2011 , 3,	8.6	78
223	Mapping Chemical Structures to Markush Structures Using SMIRKS. <i>Molecular Informatics</i> , 2011 , 30, 665	5-3.8	4
222	From Hits to Leads: Challenges for the Next Phase of Machine Learning in Medicinal Chemistry. <i>Molecular Informatics</i> , 2011 , 30, 759-63	3.8	2
221	Potent inhibitors of 5-lipoxygenase identified using pseudoreceptors. <i>ChemMedChem</i> , 2011 , 6, 1001-5	3.7	9
220	Pharmacophore alignment search tool: influence of scoring systems on text-based similarity searching. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1635-47	3.5	6

(2010-2011)

219	Pharmacophore alignment search tool: influence of the third dimension on text-based similarity searching. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1618-34	3.5	1
218	Neighborhood-Preserving Visualization of Adaptive StructureActivity Landscapes: Application to Drug Discovery. <i>Angewandte Chemie</i> , 2011 , 123, 11837-11840	3.6	9
217	Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11633-6	16.4	37
216	Context-based identification of protein-protein interfaces and "hot-spot" residues. <i>Chemistry and Biology</i> , 2011 , 18, 344-53		50
215	Scaffold-hopping from aminoglycosides to small synthetic inhibitors of bacterial protein biosynthesis using a pseudoreceptor model. <i>MedChemComm</i> , 2011 , 2, 181	5	1
214	Long signal peptides of RGMa and DCBLD2 are dissectible into subdomains according to the NtraC model. <i>Molecular BioSystems</i> , 2011 , 7, 942-51		4
213	Assay Related Target Similarity (ARTS) - chemogenomics approach for quantitative comparison of biological targets. <i>Journal of Chemical Information and Modeling</i> , 2011 , 51, 1897-905	6.1	13
212	Dimerization of human 5-lipoxygenase. <i>Biological Chemistry</i> , 2011 , 392, 1097-111	4.5	38
211	Fate of primary cells at the GI/S boundary after polo-like kinase 1 inhibition by SBE13. <i>Cell Cycle</i> , 2011 , 10, 708-20	4.7	12
210	De novo drug design. <i>Methods in Molecular Biology</i> , 2011 , 672, 299-323	1.4	87
209	Brain-like Processing and Classification of Chemical Data 2011 , 289-303		
208	Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. <i>EMBO Reports</i> , 2010 , 11, 798-804	6.5	211
207	Multivariate analyses of immune reconstitution in children after allo-SCT: risk-estimation based on age-matched leukocyte sub-populations. <i>Bone Marrow Transplantation</i> , 2010 , 45, 613-21	4.4	23
206	Virtual screening: an endless staircase?. <i>Nature Reviews Drug Discovery</i> , 2010 , 9, 273-6	64.1	368
205	Antidiabetic sulfonylureas modulate farnesoid X receptor activation and target gene transcription. <i>Future Medicinal Chemistry</i> , 2010 , 2, 575-86	4.1	4
204	Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. <i>Infection and Immunity</i> , 2010 , 78, 4882-94	3.7	38
203	Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activatorsidentification of a novel pharmacophore. <i>Molecular Pharmacology</i> , 2010 , 77, 368-77	4.3	74
202	MHC I stabilizing potential of computer-designed octapeptides. <i>Journal of Biomedicine and Biotechnology</i> , 2010 , 2010, 396847		3

201	Biological impact of freezing Plk1 in its inactive conformation in cancer cells. <i>Cell Cycle</i> , 2010 , 9, 761-73	4.7	31
200	Concepts and applications of "natural computing" techniques in de novo drug and peptide design. <i>Current Pharmaceutical Design</i> , 2010 , 16, 1656-65	3.3	22
199	Nonacidic inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1) identified by a multistep virtual screening protocol. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 911-5	8.3	34
198	'Fuzziness' in pharmacophore-based virtual screening and de novo design. <i>Drug Discovery Today: Technologies</i> , 2010 , 7, e203-70	7.1	19
197	Exploring the chemical space of gamma-secretase modulators. <i>Trends in Pharmacological Sciences</i> , 2010 , 31, 402-10	13.2	25
196	Self-organizing fuzzy graphs for structure-based comparison of protein pockets. <i>Journal of Proteome Research</i> , 2010 , 9, 6498-510	5.6	25
195	Lead identification and optimization of diaminopyrimidines as histamine H4 receptor ligands. <i>Inflammation Research</i> , 2010 , 59 Suppl 2, S249-51	7.2	4
194	From machine learning to natural product derivatives that selectively activate transcription factor PPARgamma. <i>ChemMedChem</i> , 2010 , 5, 191-4	3.7	47
193	Protein-protein docking by shape-complementarity and property matching. <i>Journal of Computational Chemistry</i> , 2010 , 31, 1919-28	3.5	8
192	Pharmacophore alignment search tool: Influence of canonical atom labeling on similarity searching. Journal of Computational Chemistry, 2010 , 31, 2810-26	3.5	7
191	De novo Drug Design 2010 , 165-185		4
190	Architectural repertoire of ligand-binding pockets on protein surfaces. <i>ChemBioChem</i> , 2010 , 11, 556-63	3.8	19
189	In silico characterization of ligand binding modes in the human histamine H4 receptor and their impact on receptor activation. <i>ChemBioChem</i> , 2010 , 11, 1850-5	3.8	9
188	Multistep virtual screening for rapid and efficient identification of non-nucleoside bacterial thymidine kinase inhibitors. <i>Chemistry - A European Journal</i> , 2010 , 16, 9630-7	4.8	8
187	Elucidation of the structure and intermolecular interactions of a reversible cyclic-peptide inhibitor of the proteasome by NMR spectroscopy and molecular modeling. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3934-8	16.4	22
186	Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides. <i>Molecular Informatics</i> , 2010 , 29, 65-74	3.8	4
185	Target Profile Prediction: Cross-Activation of Peroxisome Proliferator-Activated Receptor (PPAR) and Farnesoid X Receptor (FXR). <i>Molecular Informatics</i> , 2010 , 29, 287-92	3.8	8
184	Automated Docking of Flexible Molecules Into Receptor Binding Sites by Ligand Self-Organization In Situ. <i>Molecular Informatics</i> , 2010 , 29, 189-93	3.8	9

183	Graph Kernels for Molecular Similarity. <i>Molecular Informatics</i> , 2010 , 29, 266-73	3.8	28
182	Missing Value Estimation for Compound-Target Activity Data. <i>Molecular Informatics</i> , 2010 , 29, 678-84	3.8	9
181	Rational design of a pirinixic acid derivative that acts as subtype-selective PPARgamma modulator. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 2469-73	2.9	9
180	Truxillic acid derivatives act as peroxisome proliferator-activated receptor gamma activators. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 2920-3	2.9	9
179	Kernel learning for ligand-based virtual screening: discovery of a new PPARD gonist. <i>Journal of Cheminformatics</i> , 2010 , 2,	8.6	2
178	Prediction of type III secretion signals in genomes of gram-negative bacteria. <i>PLoS ONE</i> , 2009 , 4, e5917	3.7	95
177	Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 12079-84	11.5	38
176	Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. <i>Journal of Immunology</i> , 2009 , 183, 3433-42	5.3	60
175	Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. <i>Journal of Biological Chemistry</i> , 2009 , 284, 5819-26	5.4	60
174	Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2009 , 12, 383-96	1.3	22
173	Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. <i>Current Medicinal Chemistry</i> , 2009 , 16, 258-66	4.3	90
172	Architecture, function and prediction of long signal peptides. <i>Briefings in Bioinformatics</i> , 2009 , 10, 569-7	783.4	28
171	Voyages to the (un)known: adaptive design of bioactive compounds. <i>Trends in Biotechnology</i> , 2009 , 27, 18-26	15.1	76
170	MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation. <i>European Journal of Pharmacology</i> , 2009 , 608, 84-90	5.3	23
169	Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. <i>ChemBioChem</i> , 2009 , 10, 75-8	3.8	31
168	The state of the art of chemical biology. <i>ChemBioChem</i> , 2009 , 10, 16-29	3.8	38
167	From molecular shape to potent bioactive agents I: bioisosteric replacement of molecular fragments. <i>ChemMedChem</i> , 2009 , 4, 41-4	3.7	18
166	From molecular shape to potent bioactive agents II: fragment-based de novo design. <i>ChemMedChem</i> , 2009 , 4, 45-8	3.7	26

165	Homology model adjustment and ligand screening with a pseudoreceptor of the human histamine H4 receptor. <i>ChemMedChem</i> , 2009 , 4, 820-7	3.7	33
164	Identification and validation of a potent type II inhibitor of inactive polo-like kinase 1. <i>ChemMedChem</i> , 2009 , 4, 1806-9	3.7	32
163	PhAST: pharmacophore alignment search tool. <i>Journal of Computational Chemistry</i> , 2009 , 30, 761-71	3.5	22
162	Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. <i>Journal of Computational Chemistry</i> , 2009 , 30, 2285-96	3.5	20
161	2,4-Diaminopyrimidines as histamine H4 receptor ligandsScaffold optimization and pharmacological characterization. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 7186-96	3.4	57
160	Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. <i>Journal of Computer-Aided Molecular Design</i> , 2009 , 23, 869-81	4.2	22
159	Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. <i>Cellular and Molecular Life Sciences</i> , 2009 , 66, 2759-71	10.3	48
158	Prediction of turn types in protein structure by machine-learning classifiers. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 74, 344-52	4.2	20
157	Form follows function: shape analysis of protein cavities for receptor-based drug design. <i>Proteomics</i> , 2009 , 9, 451-9	4.8	40
156	Novel Pirinixic Acids as PPAR⊞ Preferential Dual PPAR⊞/IAgonists. <i>QSAR and Combinatorial Science</i> , 2009 , 28, 576-586		12
155	Virtual screening for PPAR-gamma ligands using the ISOAK molecular graph kernel and gaussian		_
	processes. Chemistry Central Journal, 2009 , 3,		1
154			1
154 153	processes. Chemistry Central Journal, 2009 , 3,	.9 ^{10.7}	
	processes. Chemistry Central Journal, 2009, 3, PocketGraph: graph representation of binding site volumes. Chemistry Central Journal, 2009, 3, Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood		1
153	processes. <i>Chemistry Central Journal</i> , 2009 , 3, PocketGraph: graph representation of binding site volumes. <i>Chemistry Central Journal</i> , 2009 , 3, Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. <i>Leukemia</i> , 2009 , 23, 1472-Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric		1 44
153 152	PocketGraph: graph representation of binding site volumes. <i>Chemistry Central Journal</i> , 2009 , 3, Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. <i>Leukemia</i> , 2009 , 23, 1472-Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 5708-An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. <i>Eukaryotic</i>		1 44 23
153 152 151	PocketGraph: graph representation of binding site volumes. <i>Chemistry Central Journal</i> , 2009 , 3, Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. <i>Leukemia</i> , 2009 , 23, 1472-Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 5708-An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. <i>Eukaryotic Cell</i> , 2009 , 8, 1134-45 Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and	1 3 ·4	1 44 23 125

(2007-2009)

147	Domain organization of long autotransporter signal sequences. <i>Bioinformatics and Biology Insights</i> , 2009 , 3, 189-204	5.3	6
146	Adaptive combinatorial design of focused compound libraries. <i>Methods in Molecular Biology</i> , 2009 , 572, 135-47	1.4	7
145	Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. <i>Nature Reviews Drug Discovery</i> , 2008 , 7, 667-77	64.1	69
144	Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. <i>Biochemical Pharmacology</i> , 2008 , 75, 503-13	6	73
143	Identification of hits and lead structure candidates with limited resources by adaptive optimization. <i>Journal of Chemical Information and Modeling</i> , 2008 , 48, 1473-91	6.1	19
142	Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 2115-27	8.3	39
141	Bioisosteric Replacement of Molecular Scaffolds: From Natural Products to Synthetic Compounds. <i>Natural Product Communications</i> , 2008 , 3, 1934578X0800300	0.9	2
140	The Plasmodium export element revisited. <i>PLoS ONE</i> , 2008 , 3, e1560	3.7	19
139	Domain organization of long signal peptides of single-pass integral membrane proteins reveals multiple functional capacity. <i>PLoS ONE</i> , 2008 , 3, e2767	3.7	19
138	Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. <i>PLoS ONE</i> , 2008 , 3, e3510	3.7	64
137	The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. <i>Journal of Computer-Aided Molecular Design</i> , 2008 , 22, 59-68	4.2	17
136	Scaffold-hopping cascade yields potent inhibitors of 5-lipoxygenase. <i>ChemMedChem</i> , 2008 , 3, 1535-8	3.7	31
135	Shapelets: possibilities and limitations of shape-based virtual screening. <i>Journal of Computational Chemistry</i> , 2008 , 29, 108-14	3.5	29
134	Scaffold diversity of natural products: inspiration for combinatorial library design. <i>Natural Product Reports</i> , 2008 , 25, 892-904	15.1	178
133	Synergism of shrew-1's signal peptide and transmembrane segment required for plasma membrane localization. <i>Traffic</i> , 2008 , 9, 1344-53	5.7	8
132	Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. <i>Chemical Biology and Drug Design</i> , 2008 , 72, 16-26	2.9	45
131	Chapter 7:Fragment-based De Novo Design of Drug-like Molecules 2008 , 217-239		3
130	Kernel approach to molecular similarity based on iterative graph similarity. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 2280-6	6.1	54

129	Molecular query language (MQL)a context-free grammar for substructure matching. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 295-301	6.1	28
128	Identification of natural-product-derived inhibitors of 5-lipoxygenase activity by ligand-based virtual screening. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 2640-6	8.3	61
127	Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 656-67	6.1	56
126	Classification of Local Protein Structural Motifs by Kohonen Networks 2007 , 85-92		1
125	Scaffold hopping by "fuzzy" pharmacophores and its application to RNA targets. <i>ChemBioChem</i> , 2007 , 8, 1932-6	3.8	41
124	Searching for drug scaffolds with 3D pharmacophores and neural network ensembles. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5336-9	16.4	18
123	Suche nach Wirkstoff-Grundger\(\mathbb{E}\)ten mit 3D-Pharmakophorhypothesen und Ensembles neuronaler Netze. \(Angewandte Chemie, \) 2007, 119, 5432-5435	3.6	3
122	GPCR targeted library design: novel dopamine D3 receptor ligands. <i>ChemMedChem</i> , 2007 , 2, 1000-5	3.7	11
121	Virtual screening for selective allosteric mGluR1 antagonists and structure-activity relationship investigations for coumarine derivatives. <i>ChemMedChem</i> , 2007 , 2, 1763-73	3.7	31
120	Predicting olfactory receptor neuron responses from odorant structure. <i>Chemistry Central Journal</i> , 2007 , 1, 11		39
119	PocketPicker: analysis of ligand binding-sites with shape descriptors. <i>Chemistry Central Journal</i> , 2007 , 1, 7		228
118	SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 407-410		44
117	A Virtual Screening Filter for Identification of Cytochrome P450 2C9 (CYP2C9) Inhibitors. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 618-628		20
116	The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. <i>British Journal of Pharmacology</i> , 2007 , 152, 471-80	8.6	61
115	Processing and classification of chemical data inspired by insect olfaction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20285-9	11.5	70
114	Design of MHC I stabilizing peptides by agent-based exploration of sequence space. <i>Protein Engineering, Design and Selection</i> , 2007 , 20, 99-108	1.9	14
113	Classification and Prediction of Tripeptides Inhibiting HIV-1 Tat/TAR-RNA Interaction Using a Self-Organizing Map. <i>Letters in Drug Design and Discovery</i> , 2007 , 4, 410-416	0.8	
112	Structure-based virtual screening of FGFR inhibitors: cross-decoys and induced-fit effect. <i>BioDrugs</i> , 2007 , 21, 31-45	7.9	10

111	SOMMER: self-organising maps for education and research. <i>Journal of Molecular Modeling</i> , 2007 , 13, 225	i <u>2</u> 8	18
110	Protein Folding Simulation by Particle Swarm Optimization. <i>The Open Structural Biology Journal</i> , 2007 , 1, 1-6		8
109	Properties and Architecture of Drugs and Natural Products Revisited. <i>Current Chemical Biology</i> , 2007 , 1, 115-127	0.4	74
108	Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. <i>BMC Bioinformatics</i> , 2006 , 7, 125	3.6	156
107	Scaffold-hopping potential of ligand-based similarity concepts. <i>ChemMedChem</i> , 2006 , 1, 181-5	3.7	80
106	Predicting compound selectivity by self-organizing maps: cross-activities of metabotropic glutamate receptor antagonists. <i>ChemMedChem</i> , 2006 , 1, 1066-8	3.7	51
105	Virtual screening for PPAR modulators using a probabilistic neural network. <i>ChemMedChem</i> , 2006 , 1, 1346-50	3.7	17
104	A pseudo-ligand approach to virtual screening. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2006 , 9, 359-64	1.3	15
103	Flux (1): a virtual synthesis scheme for fragment-based de novo design. <i>Journal of Chemical Information and Modeling</i> , 2006 , 46, 699-707	6.1	88
102	Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. <i>Journal of Chemical Information and Modeling</i> , 2006 , 46, 2324-32	6.1	46
101	NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening. <i>Journal of Chemical Information and Modeling</i> , 2006 , 46, 2220-9	6.1	24
100	Alignment-Free Pharmacophore Patterns [A Correlation-Vector Approach. <i>Methods and Principles in Medicinal Chemistry</i> , 2006 , 49-79	0.4	12
99	Scaffold-Hopping: How Far Can You Jump?. <i>QSAR and Combinatorial Science</i> , 2006 , 25, 1162-1171		123
98	Detection and assessment of near-zero delays in neuronal spiking activity. <i>Journal of Neuroscience Methods</i> , 2006 , 152, 97-106	3	27
97	Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 6997-7004	8.3	60
96	A hierarchical clustering approach for large compound libraries. <i>Journal of Chemical Information and Modeling</i> , 2005 , 45, 807-15	6.1	45
95	A neuro-fuzzy approach to virtual screening in molecular bioinformatics. <i>Fuzzy Sets and Systems</i> , 2005 , 152, 67-82	3.7	2
94	Computer-based de novo design of drug-like molecules. <i>Nature Reviews Drug Discovery</i> , 2005 , 4, 649-63	64.1	583

93	New allosteric modulators of metabotropic glutamate receptor 5 (mGluR5) found by ligand-based virtual screening. <i>ChemBioChem</i> , 2005 , 6, 620-5	3.8	21
92	New inhibitors of the Tat-TAR RNA interaction found with a "fuzzy" pharmacophore model. <i>ChemBioChem</i> , 2005 , 6, 1119-25	3.8	31
91	From virtual to real screening for D3 dopamine receptor ligands. <i>ChemBioChem</i> , 2005 , 6, 997-9	3.8	23
90	Multi-space classification for predicting GPCR-ligands. <i>Molecular Diversity</i> , 2005 , 9, 371-83	3.1	19
89	Comparison of Three Holographic Fingerprint Descriptors and their Binary Counterparts. <i>QSAR and Combinatorial Science</i> , 2005 , 24, 961-967		16
88	Caspase-mediated degradation of human 5-lipoxygenase in B lymphocytic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13164-9	11.5	24
87	Impact of different software implementations on the performance of the Maxmin method for diverse subset selection. <i>Molecular Diversity</i> , 2004 , 8, 421-5	3.1	8
86	Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks. <i>Journal of Molecular Modeling</i> , 2004 , 10, 204-11	2	22
85	Advances in the prediction of protein targeting signals. <i>Proteomics</i> , 2004 , 4, 1571-80	4.8	90
84	Optimization of a Pharmacophore-based Correlation Vector Descriptor for Similarity Searching. <i>QSAR and Combinatorial Science</i> , 2004 , 23, 19-22		16
83	Status of HTS Data Mining Approaches. <i>QSAR and Combinatorial Science</i> , 2004 , 23, 207-213		29
82	Identification of novel cannabinoid receptor ligands via evolutionary de novo design and rapid parallel synthesis. <i>QSAR and Combinatorial Science</i> , 2004 , 23, 426-430		24
81	Evaluation of distance metrics for ligand-based similarity searching. <i>ChemBioChem</i> , 2004 , 5, 538-40	3.8	20
80	Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification <i>ChemInform</i> , 2004 , 35, no		1
79	SVM-based feature selection for characterization of focused compound collections. <i>Journal of Chemical Information and Computer Sciences</i> , 2004 , 44, 993-9		54
78	Fuzzy pharmacophore models from molecular alignments for correlation-vector-based virtual screening. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 4653-64	8.3	48
77	Navigation in Chemical Space: Ligand-Based Design of Focused Compound Libraries. <i>Methods and Principles in Medicinal Chemistry</i> , 2004 , 341-376	0.4	14
76	Comparison of correlation vector methods for ligand-based similarity searching. <i>Journal of Computer-Aided Molecular Design</i> , 2003 , 17, 687-98	4.2	74

(2002-2003)

75	Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. <i>Molecular and Biochemical Parasitology</i> , 2003 , 132, 59-66	1.9	105
74	ChemSpaceShuttle: A tool for data mining in drug discovery by classification, projection, and 3D visualization. <i>QSAR and Combinatorial Science</i> , 2003 , 22, 549-559		12
73	SMILIB: Rapid Assembly of Combinatorial Libraries in SMILES Notation. <i>QSAR and Combinatorial Science</i> , 2003 , 22, 719-721		28
72	Collection of Bioactive Reference Compounds for Focused Library Design. <i>QSAR and Combinatorial Science</i> , 2003 , 22, 713-718		112
71	Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. <i>Journal of Chemical Information and Computer Sciences</i> , 2003 , 43, 1882-9		402
70	Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps. <i>ACS Combinatorial Science</i> , 2003 , 5, 233-7		65
69	Receptor-Ligand Interaction. Methods and Principles in Medicinal Chemistry, 2003, 107-135	0.4	2
68	Small Molecule Screening on Chemical Microarrays. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 213-236	0.4	5
67	Prediction of Non-bonded Interactions in Drug Design. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 3-20	0.4	8
66	Introduction to Molecular Recognition Models. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 21-5	50.4	2
65	Experimental Approaches to Determine the Thermodynamics of Protein-Ligand Interactions. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 51-71	0.4	
64	The Biophore Concept. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 73-105	0.4	3
63	Hydrogen Bonds in Protein-Ligand Complexes. Methods and Principles in Medicinal Chemistry, 2003, 137	-164	17
62	Principles of Enzyme-Inhibitor Design. Methods and Principles in Medicinal Chemistry, 2003, 163-185	0.4	4
61	Tailoring Protein Scaffolds for Ligand Recognition. <i>Methods and Principles in Medicinal Chemistry</i> , 2003 , 187-211	0.4	
60	Improved anaerobic use of arginine by Saccharomyces cerevisiae. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 1623-8	4.8	24
59	Support vector machine applications in bioinformatics. <i>Applied Bioinformatics</i> , 2003 , 2, 67-77		127
58	Virtual screening and fast automated docking methods. <i>Drug Discovery Today</i> , 2002 , 7, 64-70	8.8	214

57	Virtual screening and fast automated docking methods. <i>Drug Discovery Today</i> , 2002 , 7, 64-70	8.8	228
56	A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. <i>QSAR and Combinatorial Science</i> , 2002 , 21, 249-256		32
55	A virtual screening method for prediction of the HERG potassium channel liability of compound libraries. <i>ChemBioChem</i> , 2002 , 3, 455-9	3.8	152
54	Trends in virtual combinatorial library design. <i>Current Medicinal Chemistry</i> , 2002 , 9, 2095-101	4.3	65
53	Development of a virtual screening method for identification of "frequent hitters" in compound libraries. <i>Journal of Medicinal Chemistry</i> , 2002 , 45, 137-42	8.3	258
52	Prediction of human pharmacokinetics based on preclinical in vitro and in vivo data. <i>Ernst Schering Research Foundation Workshop</i> , 2002 , 81-104		2
51	H-BloX: visualizing alignment block entropies. <i>Journal of Molecular Graphics and Modelling</i> , 2001 , 19, 304-6, 379	2.8	9
50	Qualitative highly divergent nuclear export signals can regulate export by the competition for transport cofactors in vivo. <i>Traffic</i> , 2001 , 2, 544-55	5.7	23
49	Analysis and prediction of mitochondrial targeting peptides. <i>Methods in Cell Biology</i> , 2001 , 65, 175-87	1.8	34
48	Prediction of hepatic metabolic clearance: comparison and assessment of prediction models. <i>Clinical Pharmacokinetics</i> , 2001 , 40, 553-63	6.2	69
47	Rapid evaluation and optimization of recombinant protein production using GFP tagging. <i>Protein Expression and Purification</i> , 2001 , 21, 220-3	2	25
46	Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. <i>ACS Combinatorial Science</i> , 2001 , 3, 284-9		245
45	Deciphering apicoplast targeting signalsfeature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. <i>Gene</i> , 2001 , 280, 19-26	3.8	177
44	Integrating Virtual Screening Methods to the Quest for Novel Membrane Protein Ligands. <i>Current Medicinal Chemistry - Central Nervous System Agents</i> , 2001 , 1, 99-112		3
43	Evolutionles De-novo-Design bioaktiver Molekle: ein Ansatz zum virtuellen Screening. <i>Angewandte Chemie</i> , 2000 , 112, 4305-4309	3.6	4
42	Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4130-4133	16.4	74
41	Neural networks are useful tools for drug design. <i>Neural Networks</i> , 2000 , 13, 15-6	9.1	44
40	De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. <i>Journal of Computer-Aided Molecular Design</i> , 2000 , 14, 487-94	4.2	178

39	Descriptor-Based Similarity Measures for Screening Chemical Databases. <i>Methods and Principles in Medicinal Chemistry</i> , 2000 , 59-80	0.4	10
38	Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. <i>Protein Engineering, Design and Selection</i> , 2000 , 13, 83-8	1.9	41
37	Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency. <i>Journal of Molecular Biology</i> , 2000 , 302, 441-53	6.5	44
36	High-Throughput Screening and Virtual Screening: Entry Points to Drug Discovery. <i>Methods and Principles in Medicinal Chemistry</i> , 2000 , 1-14	0.4	3
35	Database Profiling by Neural Networks. <i>Methods and Principles in Medicinal Chemistry</i> , 2000 , 117-129	0.4	1
34	Evolutionary Molecular Design in Virtual Fitness Landscapes. <i>Methods and Principles in Medicinal Chemistry</i> , 2000 , 161-186	0.4	2
33	Practical Approaches to Evolutionary Design. Methods and Principles in Medicinal Chemistry, 2000, 187-2	05 4	3
32	Mapping of proteinase active sites by projection of surface-derived correlation vectors. <i>Journal of Computational Chemistry</i> , 1999 , 20, 336-347	3.5	16
31	©rundger⊠twechsel□(Scaffold-Hopping) durch topologische Pharmakophorsuche: ein Beitrag zum virtuellen Screening. <i>Angewandte Chemie</i> , 1999 , 111, 3068-3070	3.6	48
30	Bcaffold-HoppingIby Topological Pharmacophore Search: A Contribution to Virtual Screening. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2894-2896	16.4	529
29	How many potentially secreted proteins are contained in a bacterial genome?. <i>Gene</i> , 1999 , 237, 113-21	3.8	32
28	Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. <i>Journal of Medicinal Chemistry</i> , 1999 , 42, 5072-6	8.3	70
27	Artificial neural networks for computer-based molecular design. <i>Progress in Biophysics and Molecular Biology</i> , 1998 , 70, 175-222	4.7	160
26	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides 1998 , 30, 49-60		77
25	Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites. <i>Biochemistry</i> , 1998 , 37, 3588-93	3.2	27
24	Peptide design by artificial neural networks and computer-based evolutionary search. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 12179-84	11.5	61
23	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins: Structure, Function and Bioinformatics, 1998, 30, 49-60	4.2	31

21	Evolutionary optimization in multimodal search space. <i>Biological Cybernetics</i> , 1996 , 74, 203-207	2.8	12
20	Structure optimization of an artificial neural filter detecting membrane-spanning amino acid sequences. <i>Biopolymers</i> , 1996 , 38, 13-29	2.2	11
19	Analyse von Aminosüresequenzen mit klistlichen neuronalen Netzen. <i>Chemie in Unserer Zeit</i> , 1996 , 30, 172-181	0.2	
18	Local structural motifs of protein backbones are classified by self-organizing neural networks. <i>Protein Engineering, Design and Selection</i> , 1996 , 9, 833-42	1.9	47
17	Evolutionary optimization in multimodal search space. <i>Biological Cybernetics</i> , 1996 , 74, 203-207	2.8	
16	Development of simple fitness landscapes for peptides by artificial neural filter systems. <i>Biological Cybernetics</i> , 1995 , 73, 245-54	2.8	19
15	Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution. <i>Biophysical Journal</i> , 1995 , 68, 434-47	2.9	29
14	Lack of isodisomy for chromosome 22 in disomic meningiomas. <i>Cytogenetic and Genome Research</i> , 1995 , 71, 139-41	1.9	
13	Development of simple fitness landscapes for peptides by artificial neural filter systems. <i>Biological Cybernetics</i> , 1995 , 73, 245-254	2.8	
12	Artificial neural networks and simulated molecular evolution are potential tools for sequence-oriented protein design. <i>Bioinformatics</i> , 1994 , 10, 635-45	7.2	19
11	De novo design of peptides and proteins: machine-generated sequences by the PROSA program. <i>Bioinformatics</i> , 1994 , 10, 75-7	7.2	
10	A neural network model for the prediction of membrane-spanning amino acid sequences. <i>Protein Science</i> , 1994 , 3, 1597-601	6.3	45
9	The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. <i>Biophysical Journal</i> , 1994 , 66, 335-44	2.9	105
8	Concepts in Protein Engineering and Design 1994,		5
7	Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network. <i>Biochemical and Biophysical Research Communications</i> , 1993 , 194, 951-9	3.4	23
6	Prediction of the Secondary Structure of Proteins from the Amino Acid Sequence with Artificial Neural Networks. <i>Angewandte Chemie International Edition in English</i> , 1993 , 32, 1141-1143		3
5	Vorhersage der Sekundfistruktur von Proteinen aus der Aminosüresequenz mit klistlichen neuronalen Netzen. <i>Angewandte Chemie</i> , 1993 , 105, 1192-1194	3.6	
4	Development of artificial neural filters for pattern recognition in protein sequences. <i>Journal of Molecular Evolution</i> , 1993 , 36, 586-95	3.1	48

LIST OF PUBLICATIONS

3	Zielgerichtetes Design von Aminosüresequenzen mit Klistlichen Neuronalen Netzen. <i>Informatik Aktuell</i> , 1993 , 326-337	0.3	
2	Contributions to the knowledge of Neofulla (Plecoptera: Notonemouridae) from Chile and Argentina. <i>Studies on Neotropical Fauna and Environment</i> , 1990 , 25, 249-251	0.6	1
1	Adaptive Systems in Drug Design		12