Gisbert Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816294/publications.pdf

Version: 2024-02-01

429 papers 24,326 citations

72 h-index 136 g-index

515 all docs

515 docs citations

515 times ranked 21586 citing authors

#	Article	IF	CITATIONS
1	Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery, 2012, 11, 37-51.	21.5	1,578
2	Counting on natural products for drug design. Nature Chemistry, 2016, 8, 531-541.	6.6	879
3	Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery, 2005, 4, 649-663.	21.5	756
4	"Scaffold-Hopping―by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angewandte Chemie - International Edition, 1999, 38, 2894-2896.	7.2	629
5	Deep Learning in Drug Discovery. Molecular Informatics, 2016, 35, 3-14.	1.4	502
6	Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews, 2019, 119, 10520-10594.	23.0	499
7	Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification. Journal of Chemical Information and Computer Sciences, 2003, 43, 1882-1889.	2.8	487
8	Automating drug discovery. Nature Reviews Drug Discovery, 2018, 17, 97-113.	21.5	456
9	Virtual screening: an endless staircase?. Nature Reviews Drug Discovery, 2010, 9, 273-276.	21.5	445
10	Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2020, 2, 573-584.	8.3	411
11	Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 2020, 19, 353-364.	21.5	394
12	Predicting drug metabolism: experiment and/or computation?. Nature Reviews Drug Discovery, 2015, 14, 387-404.	21.5	355
13	Generative Recurrent Networks for <i>De Novo</i> Drug Design. Molecular Informatics, 2018, 37, 1700111.	1.4	305
14	PocketPicker: analysis of ligand binding-sites with shape descriptors. Chemistry Central Journal, 2007, 1, 7.	2.6	278
15	Virtual screening and fast automated docking methods. Drug Discovery Today, 2002, 7, 64-70.	3.2	275
16	Scaffold Architecture and Pharmacophoric Properties of Natural Products and Trade Drugs:Â Application in the Design of Natural Product-Based Combinatorial Libraries. ACS Combinatorial Science, 2001, 3, 284-289.	3.3	270
17	Development of a Virtual Screening Method for Identification of "Frequent Hitters―in Compound Libraries. Journal of Medicinal Chemistry, 2002, 45, 137-142.	2.9	270
18	<i>Helicobacter pylori</i> HtrA is a new secreted virulence factor that cleaves Eâ€cadherin to disrupt intercellular adhesion. EMBO Reports, 2010, 11, 798-804.	2.0	264

#	Article	IF	Citations
19	Virtual screening and fast automated docking methods. Drug Discovery Today, 2002, 7, 64-70.	3.2	249
20	<i>De Novo</i> Design of Bioactive Small Molecules by Artificial Intelligence. Molecular Informatics, 2018, 37, 1700153.	1.4	246
21	Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics, 2006, 7, 125.	1.2	226
22	De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. Journal of Computer-Aided Molecular Design, 2000, 14, 487-494.	1.3	218
23	Scaffold diversity of natural products: inspiration for combinatorial library design. Natural Product Reports, 2008, 25, 892.	5.2	200
24	Deciphering apicoplast targeting signals $\hat{a} \in \text{``feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene, 2001, 280, 19-26.}$	1.0	199
25	Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4067-4072.	3.3	196
26	DOGS: Reaction-Driven de novo Design of Bioactive Compounds. PLoS Computational Biology, 2012, 8, e1002380.	1.5	193
27	Artificial neural networks for computer-based molecular design. Progress in Biophysics and Molecular Biology, 1998, 70, 175-222.	1.4	189
28	Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nature Chemistry, 2015, 7, 241-249.	6.6	181
29	Active-learning strategies in computer-assisted drug discovery. Drug Discovery Today, 2015, 20, 458-465.	3.2	169
30	A Virtual Screening Method for Prediction of the hERG Potassium Channel Liability of Compound Libraries. ChemBioChem, 2002, 3, 455.	1.3	168
31	Recurrent Neural Network Model for Constructive Peptide Design. Journal of Chemical Information and Modeling, 2018, 58, 472-479.	2.5	165
32	Distinct Roles of Secreted HtrA Proteases from Gram-negative Pathogens in Cleaving the Junctional Protein and Tumor Suppressor E-cadherin. Journal of Biological Chemistry, 2012, 287, 10115-10120.	1.6	150
33	The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophysical Journal, 1994, 66, 335-344.	0.2	140
34	Support vector machine applications in bioinformatics. Applied Bioinformatics, 2003, 2, 67-77.	1.7	137
35	An Unusual ERAD-Like Complex Is Targeted to the Apicoplast of <i>Plasmodium falciparum </i> Eukaryotic Cell, 2009, 8, 1134-1145.	3.4	136
36	Scaffold-Hopping: How Far Can You Jump?. QSAR and Combinatorial Science, 2006, 25, 1162-1171.	1.5	135

#	Article	IF	CITATIONS
37	Chemically Advanced Template Search (CATS) for Scaffoldâ∈Hopping and Prospective Target Prediction for †Orphan†Molecules. Molecular Informatics, 2013, 32, 133-138.	1.4	132
38	Collection of Bioactive Reference Compounds for Focused Library Design. QSAR and Combinatorial Science, 2003, 22, 713-718.	1.5	128
39	Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery, 2021, 16, 949-959.	2.5	128
40	A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 2021, 50, 9121-9151.	18.7	128
41	De Novo Drug Design. Methods in Molecular Biology, 2010, 672, 299-323.	0.4	125
42	De Novo Design at the Edge of Chaos. Journal of Medicinal Chemistry, 2016, 59, 4077-4086.	2.9	124
43	Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2003, 132, 59-66.	0.5	120
44	Revealing the macromolecular targets of complex natural products. Nature Chemistry, 2014, 6, 1072-1078.	6.6	114
45	Self-Organizing Maps in Drug Discovery: Compound Library Design, Scaffold-Hopping, Repurposing. Current Medicinal Chemistry, 2009, 16, 258-266.	1.2	111
46	Generative molecular design in low data regimes. Nature Machine Intelligence, 2020, 2, 171-180.	8.3	111
47	Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria. PLoS ONE, 2009, 4, e5917.	1.1	108
48	modlAMP: Python for antimicrobial peptides. Bioinformatics, 2017, 33, 2753-2755.	1.8	106
49	Flux (1):Â A Virtual Synthesis Scheme for Fragment-Based de Novo Design. Journal of Chemical Information and Modeling, 2006, 46, 699-707.	2.5	101
50	Bidirectional Molecule Generation with Recurrent Neural Networks. Journal of Chemical Information and Modeling, 2020, 60, 1175-1183.	2.5	101
51	Advances in the prediction of protein targeting signals. Proteomics, 2004, 4, 1571-1580.	1.3	99
52	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie - International Edition, 2019, 58, 10792-10803.	7.2	99
53	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides., 1998, 30, 49-60.		98
54	Geometric deep learning on molecular representations. Nature Machine Intelligence, 2021, 3, 1023-1032.	8.3	98

#	Article	IF	CITATIONS
55	Discovery of Smallâ€Molecule Interleukinâ€2 Inhibitors from a DNAâ€Encoded Chemical Library. Chemistry - A European Journal, 2012, 18, 7729-7737.	1.7	94
56	A Collection of Robust Organic Synthesis Reactions for <i>In Silico</i> Molecule Design. Journal of Chemical Information and Modeling, 2011, 51, 3093-3098.	2.5	92
57	Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochemical Pharmacology, 2008, 75, 503-513.	2.0	89
58	Comparison of correlation vector methods for ligand-based similarity searching. Journal of Computer-Aided Molecular Design, 2003, 17, 687-698.	1.3	87
59	Properties and Architecture of Drugs and Natural Products Revisited. Current Chemical Biology, 2007, 1, 115-127.	0.2	87
60	Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design. Angewandte Chemie - International Edition, 2000, 39, 4130-4133.	7.2	86
61	Scaffold-Hopping Potential of Ligand-Based Similarity Concepts. ChemMedChem, 2006, 1, 181-185.	1.6	86
62	Accessing New Chemical Entities through Microfluidic Systems. Angewandte Chemie - International Edition, 2014, 53, 5750-5758.	7.2	86
63	Privileged Structures Revisited. Angewandte Chemie - International Edition, 2017, 56, 7971-7974.	7.2	85
64	Simple 2,4-Diacylphloroglucinols as Classic Transient Receptor Potential-6 Activators—Identification of a Novel Pharmacophore. Molecular Pharmacology, 2010, 77, 368-377.	1.0	84
65	Processing and classification of chemical data inspired by insect olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20285-20289.	3.3	81
66	Voyages to the (un)known: adaptive design of bioactive compounds. Trends in Biotechnology, 2009, 27, 18-26.	4.9	80
67	Prediction of Hepatic Metabolic Clearance. Clinical Pharmacokinetics, 2001, 40, 553-563.	1.6	79
68	Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. Nature Reviews Drug Discovery, 2008, 7, 667-677.	21.5	78
69	Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Scientific Reports, 2016, 6, 23264.	1.6	77
70	Combining in Vitro and in Vivo Pharmacokinetic Data for Prediction of Hepatic Drug Clearance in Humans by Artificial Neural Networks and Multivariate Statistical Techniques. Journal of Medicinal Chemistry, 1999, 42, 5072-5076.	2.9	76
71	Multiâ€Objective Molecular De Novo Design by Adaptive Fragment Prioritization. Angewandte Chemie - International Edition, 2014, 53, 4244-4248.	7.2	76
72	Trends in Virtual Combinatorial Library Design. Current Medicinal Chemistry, 2002, 9, 2095-2101.	1.2	75

#	Article	IF	CITATIONS
73	Prediction of Extracellular Proteases of the Human Pathogen Helicobacter pylori Reveals Proteolytic Activity of the Hp1018/19 Protein HtrA. PLoS ONE, 2008, 3, e3510.	1.1	75
74	Active learning for computational chemogenomics. Future Medicinal Chemistry, 2017, 9, 381-402.	1.1	75
75	Peptide design by artificial neural networks and computer-based evolutionary search. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12179-12184.	3.3	74
76	Ligand-Based Combinatorial Design of Selective Purinergic Receptor (A2A) Antagonists Using Self-Organizing Maps. ACS Combinatorial Science, 2003, 5, 233-237.	3.3	73
77	Identification of Human Cathepsin G As a Functional Target of Boswellic Acids from the Anti-Inflammatory Remedy Frankincense. Journal of Immunology, 2009, 183, 3433-3442.	0.4	72
78	Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. Journal of Molecular Graphics and Modelling, 2012, 34, 108-117.	1.3	72
79	Identification of Natural-Product-Derived Inhibitors of 5-Lipoxygenase Activity by Ligand-Based Virtual Screening. Journal of Medicinal Chemistry, 2007, 50, 2640-2646.	2.9	70
80	Characterisation of worldwide <i>Helicobacter pylori</i> strains reveals genetic conservation and essentiality of serine protease HtrA. Molecular Microbiology, 2016, 99, 925-944.	1.2	70
81	Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Communications Chemistry, 2018, 1 , .	2.0	69
82	Flux (2):  Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. Journal of Chemical Information and Modeling, 2007, 47, 656-667.	2.5	68
83	Common non-epigenetic drugs as epigenetic modulators. Trends in Molecular Medicine, 2013, 19, 742-753.	3.5	68
84	Membranolytic anticancer peptides. MedChemComm, 2016, 7, 2232-2245.	3.5	68
85	Extraction and Visualization of Potential Pharmacophore Points Using Support Vector Machines:Â Application to Ligand-Based Virtual Screening for COX-2 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6997-7004.	2.9	67
86	The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5â€lipoxygenase products. British Journal of Pharmacology, 2007, 152, 471-480.	2.7	67
87	Designing Anticancer Peptides by Constructive Machine Learning. ChemMedChem, 2018, 13, 1300-1302.	1.6	67
88	Combining Onâ€Chip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands. Angewandte Chemie - International Edition, 2014, 53, 582-585.	7.2	66
89	Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity. Journal of Chemical Information and Modeling, 2007, 47, 2280-2286.	2.5	64
90	Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2665-74.	3.3	64

#	Article	IF	Citations
91	Species-specific Inhibition of APOBEC3C by the Prototype Foamy Virus Protein Bet. Journal of Biological Chemistry, 2009, 284, 5819-5826.	1.6	63
92	2,4-Diaminopyrimidines as histamine H4 receptor ligandsâ€"Scaffold optimization and pharmacological characterization. Bioorganic and Medicinal Chemistry, 2009, 17, 7186-7196.	1.4	63
93	Context-Based Identification of Protein-Protein Interfaces and "Hot-Spot―Residues. Chemistry and Biology, 2011, 18, 344-353.	6.2	63
94	Advancing drug discovery via GPU-based deep learning. Expert Opinion on Drug Discovery, 2018, 13, 579-582.	2.5	62
95	Concept of Combinatorial <i>De Novo</i> Design of Drugâ€ike Molecules by Particle Swarm Optimization. Chemical Biology and Drug Design, 2008, 72, 16-26.	1.5	61
96	SVM-Based Feature Selection for Characterization of Focused Compound Collections. Journal of Chemical Information and Computer Sciences, 2004, 44, 993-999.	2.8	60
97	Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cellular and Molecular Life Sciences, 2009, 66, 2759-2771.	2.4	60
98	Enabling future drug discovery by <i>de novo</i> design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 742-759.	6.2	60
99	From Machine Learning to Natural Product Derivatives that Selectively Activate Transcription Factor PPARÎ ³ . ChemMedChem, 2010, 5, 191-194.	1.6	58
100	Aminothiazole-Featured Pirinixic Acid Derivatives As Dual 5-Lipoxygenase and Microsomal Prostaglandin E ₂ Synthase-1 Inhibitors with Improved Potency and Efficiency in Vivo. Journal of Medicinal Chemistry, 2013, 56, 9031-9044.	2.9	58
101	Local structural motifs of protein backbones are classified by self-organizing neural networks. Protein Engineering, Design and Selection, 1996, 9, 833-842.	1.0	55
102	Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors. Chemical Science, 2016, 7, 3919-3927.	3.7	55
103	Predicting Compound Selectivity by Self-Organizing Maps: Cross-Activities of Metabotropic Glutamate Receptor Antagonists. ChemMedChem, 2006, 1, 1066-1068.	1.6	54
104	SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. QSAR and Combinatorial Science, 2007, 26, 407-410.	1.5	54
105	Revealing the Macromolecular Targets of Fragmentâ€Like Natural Products. Angewandte Chemie - International Edition, 2015, 54, 10516-10520.	7.2	54
106	Neural networks are useful tools for drug design. Neural Networks, 2000, 13, 15-16.	3.3	53
107	A Hierarchical Clustering Approach for Large Compound Libraries. Journal of Chemical Information and Modeling, 2005, 45, 807-815.	2.5	53
108	Inhibitors of Helicobacter pylori Protease HtrA Found by †Virtual Ligand' Screening Combat Bacterial Invasion of Epithelia. PLoS ONE, 2011, 6, e17986.	1.1	52

#	Article	IF	CITATIONS
109	Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Science Advances, 2021, 7, .	4.7	52
110	Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. Protein Engineering, Design and Selection, 2000, 13, 83-88.	1.0	51
111	Fuzzy Pharmacophore Models from Molecular Alignments for Correlation-Vector-Based Virtual Screening. Journal of Medicinal Chemistry, 2004, 47, 4653-4664.	2.9	51
112	Impact of Conformational Flexibility on Three-Dimensional Similarity Searching Using Correlation Vectors. Journal of Chemical Information and Modeling, 2006, 46, 2324-2332.	2.5	51
113	Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency 1 1Edited by J. Thornton. Journal of Molecular Biology, 2000, 302, 441-453.	2.0	50
114	Development of artificial neural filters for pattern recognition in protein sequences. Journal of Molecular Evolution, 1993, 36, 586-595.	0.8	49
115	Adhesion, Invasion, and Agglutination Mediated by Two Trimeric Autotransporters in the Human Uropathogen <i>Proteus mirabilis</i> . Infection and Immunity, 2010, 78, 4882-4894.	1.0	49
116	Dimerization of human 5-lipoxygenase. Biological Chemistry, 2011, 392, 1097-1111.	1.2	49
117	Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGESÂ1). Journal of Medicinal Chemistry, 2012, 55, 3792-3803.	2.9	49
118	Scaffold Hopping by "Fuzzy―Pharmacophores and its Application to RNA Targets. ChemBioChem, 2007, 8, 1932-1936.	1.3	48
119	Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia, 2009, 23, 1472-1479.	3.3	48
120	Extending the Structure–Activity Relationship of Anthranilic Acid Derivatives As Farnesoid X Receptor Modulators: Development of a Highly Potent Partial Farnesoid X Receptor Agonist. Journal of Medicinal Chemistry, 2014, 57, 8035-8055.	2.9	48
121	A neural network model for the prediction of membraneâ€spanning amino acid sequences. Protein Science, 1994, 3, 1597-1601.	3.1	47
122	Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nature Machine Intelligence, 2019, 1, 307-315.	8.3	47
123	Mind and machine in drug design. Nature Machine Intelligence, 2019, 1, 128-130.	8.3	45
124	Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment. Journal of Chemical Information and Modeling, 2021, 61, 1083-1094.	2.5	45
125	Predicting olfactory receptor neuron responses from odorant structure. Chemistry Central Journal, 2007, 1, 11.	2.6	44
126	Identification and Validation of a Potent Typeâ€II Inhibitor of Inactive Poloâ€like Kinaseâ€1. ChemMedChem, 2009, 4, 1806-1809.	1.6	44

#	Article	IF	CITATIONS
127	Benzodioxoles: Novel Cannabinoid-1 Receptor Inverse Agonists for the Treatment of Obesity. Journal of Medicinal Chemistry, 2008, 51, 2115-2127.	2.9	43
128	Form follows function: Shape analysis of protein cavities for receptorâ€based drug design. Proteomics, 2009, 9, 451-459.	1.3	43
129	From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design. Angewandte Chemie - International Edition, 2016, 55, 6789-6792.	7.2	42
130	Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. Journal of the American Chemical Society, 2018, 140, 7486-7497.	6.6	42
131	Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity. Communications Chemistry, $2018, 1, \ldots$	2.0	42
132	The State of the Art of Chemical Biology. ChemBioChem, 2009, 10, 16-29.	1.3	41
133	Chapter 10 Analysis and prediction of mitochondrial targeting peptides. Methods in Cell Biology, 2001, 65, 175-187.	0.5	40
134	Binding to Large Enzyme Pockets: Smallâ€Molecule Inhibitors of Trypanothione Reductase. ChemMedChem, 2014, 9, 1880-1891.	1.6	40
135	In silico design and optimization of selective membranolytic anticancer peptides. Scientific Reports, 2019, 9, 11282.	1.6	40
136	Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence**. Angewandte Chemie - International Edition, 2021, 60, 19477-19482.	7.2	40
137	Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12079-12084.	3.3	39
138	Multidimensional Deâ€Novo Design Reveals 5â€HT _{2B} Receptorâ€Selective Ligands. Angewandte Chemie - International Edition, 2015, 54, 1551-1555.	7.2	39
139	Hybrid Network Model for "Deep Learning―of Chemical Data: Application to Antimicrobial Peptides. Molecular Informatics, 2017, 36, 1600011.	1.4	39
140	Bacterial serine protease HtrA as a promising new target for antimicrobial therapy?. Cell Communication and Signaling, 2017, 15, 4.	2.7	39
141	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. Angewandte Chemie - International Edition, 2017, 56, 11520-11524.	7.2	39
142	Computer-Assisted Discovery of Retinoid X Receptor Modulating Natural Products and Isofunctional Mimetics. Journal of Medicinal Chemistry, 2018, 61, 5442-5447.	2.9	39
143	New Inhibitors of the Tat-TAR RNA Interaction Found with a "Fuzzy―Pharmacophore Model. ChemBioChem, 2005, 6, 1119-1125.	1.3	38
144	Coactosin-like protein functions as a stabilizing chaperone for 5-lipoxygenase: role of tryptophan 102. Biochemical Journal, 2010, 425, 265-274.	1.7	38

#	Article	IF	Citations
145	Neighborhoodâ€Preserving Visualization of Adaptive Structure–Activity Landscapes: Application to Drug Discovery. Angewandte Chemie - International Edition, 2011, 50, 11633-11636.	7.2	38
146	Reaction-driven <i>de novo</i> design, synthesis and testing of potential type II kinase inhibitors. Future Medicinal Chemistry, 2011, 3, 415-424.	1.1	37
147	Structural properties of so-called NSAID–phospholipid-complexes. European Journal of Pharmaceutical Sciences, 2011, 44, 103-116.	1.9	37
148	Probing the Bioactivity-Relevant Chemical Space of Robust Reactions and Common Molecular Building Blocks. Journal of Chemical Information and Modeling, 2012, 52, 1167-1178.	2.5	37
149	Immunosuppressive Small Molecule Discovered by Structureâ€Based Virtual Screening for Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2012, 51, 258-261.	7.2	37
150	Fragmentâ€Based Deâ€Novo Design Reveals a Smallâ€Molecule Inhibitor of <i>Helicobacter Pylori</i> HtrA. Angewandte Chemie - International Edition, 2015, 54, 10244-10248.	7.2	37
151	QMugs, quantum mechanical properties of drug-like molecules. Scientific Data, 2022, 9, .	2.4	37
152	A fast virtual screening filter for cytochrome P450â€3A4 inhibition liability of compound libraries. QSAR and Combinatorial Science, 2002, 21, 249-256.	1.4	36
153	Architecture, function and prediction of long signal peptides. Briefings in Bioinformatics, 2009, 10, 569-578.	3.2	36
154	Homology Model Adjustment and Ligand Screening with a Pseudoreceptor of the Human Histamine H ₄ Receptor. ChemMedChem, 2009, 4, 820-827.	1.6	36
155	Biological impact of freezing Plk1 in its inactive conformation in cancer cells. Cell Cycle, 2010, 9, 761-774.	1.3	36
156	De novo design of anticancer peptides by ensemble artificial neural networks. Journal of Molecular Modeling, 2019, 25, 112.	0.8	36
157	Graph Kernels for Molecular Similarity. Molecular Informatics, 2010, 29, 266-273.	1.4	35
158	SMILIB: Rapid Assembly of Combinatorial Libraries in SMILES Notation. QSAR and Combinatorial Science, 2003, 22, 719-721.	1.5	34
159	Status of HTS Data Mining Approaches. QSAR and Combinatorial Science, 2004, 23, 207-213.	1.5	34
160	Virtual Screening for Selective Allosteric mGluR1 Antagonists and Structure–Activity Relationship Investigations for Coumarine Derivatives. ChemMedChem, 2007, 2, 1763-1773.	1.6	34
161	Nonacidic Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1) Identified by a Multistep Virtual Screening Protocol. Journal of Medicinal Chemistry, 2010, 53, 911-915.	2.9	34
162	De-orphaning the marine natural product $(\hat{A}\pm)$ -marinopyrrole A by computational target prediction and biochemical validation. Chemical Communications, 2017, 53, 2272-2274.	2.2	34

#	Article	IF	CITATIONS
163	Scaffoldâ€Hopping Cascade Yields Potent Inhibitors of 5â€Lipoxygenase. ChemMedChem, 2008, 3, 1535-1538.	1.6	33
164	Scrutinizing MHC-I Binding Peptides and Their Limits of Variation. PLoS Computational Biology, 2013, 9, e1003088.	1.5	33
165	Spotting and designing promiscuous ligands for drug discovery. Chemical Communications, 2016, 52, 1135-1138.	2.2	33
166	Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution. Biophysical Journal, 1995, 68, 434-447.	0.2	32
167	How many potentially secreted proteins are contained in a bacterial genome?. Gene, 1999, 237, 113-121.	1.0	32
168	Detection and assessment of near-zero delays in neuronal spiking activity. Journal of Neuroscience Methods, 2006, 152, 97-106.	1.3	32
169	Shapelets: Possibilities and limitations of shape-based virtual screening. Journal of Computational Chemistry, 2008, 29, 108-114.	1.5	32
170	Structureâ€Based Pharmacophore Screening for Naturalâ€Productâ€Derived PPARγ Agonists. ChemBioChem, 2009, 10, 75-78.	1.3	32
171	Multidimensional Design of Anticancer Peptides. Angewandte Chemie - International Edition, 2015, 54, 10370-10374.	7.2	32
172	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins: Structure, Function and Bioinformatics, 1998, 30, 49-60.	1.5	32
173	Molecular Query Language (MQL)A Context-Free Grammar for Substructure Matching. Journal of Chemical Information and Modeling, 2007, 47, 295-301.	2.5	31
174	De novo design – hop(p)ing against hope. Drug Discovery Today: Technologies, 2013, 10, e453-e460.	4.0	31
175	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. Angewandte Chemie - International Edition, 2016, 55, 12408-12411.	7.2	31
176	Machine Learning Estimates of Natural Product Conformational Energies. PLoS Computational Biology, 2014, 10, e1003400.	1.5	30
177	Deorphaning Pyrrolopyrazines as Potent Multiâ€Target Antimalarial Agents. Angewandte Chemie - International Edition, 2014, 53, 7079-7084.	7.2	30
178	De Novo Fragment Design for Drug Discovery and Chemical Biology. Angewandte Chemie - International Edition, 2015, 54, 15079-15083.	7.2	30
179	Generative Models for Artificiallyâ€intelligent Molecular Design. Molecular Informatics, 2018, 37, 1880131.	1.4	30
180	From Virtual to Real Screening for D3 Dopamine Receptor Ligands. ChemBioChem, 2005, 6, 997-999.	1.3	29

#	Article	IF	CITATIONS
181	Scaffold-Hopping Potential of Fragment-Based De Novo Design: The Chances and Limits of Variation. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 383-396.	0.6	29
182	Self-Organizing Fuzzy Graphs for Structure-Based Comparison of Protein Pockets. Journal of Proteome Research, 2010, 9, 6498-6510.	1.8	29
183	A Class of 5-Benzylidene-2-phenylthiazolinones with High Potency as Direct 5-Lipoxygenase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 1943-1947.	2.9	29
184	Discovery and Biological Evaluation of a Novel Class of Dual Microsomal Prostaglandin E ₂ Synthase-1/5-lipoxygenase Inhibitors Based on 2-[(4,6-Diphenethoxypyrimidin-2-yl)thio]hexanoic Acid. Journal of Medicinal Chemistry, 2011, 54, 4490-4507.	2.9	29
185	Sequential Anti-Cytomegalovirus Response Monitoring May Allow Prediction of Cytomegalovirus Reactivation after Allogeneic Stem Cell Transplantation. PLoS ONE, 2012, 7, e50248.	1.1	29
186	Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Chemical Science, 2014, 5, 3583.	3.7	29
187	Targeting Dynamic Pockets of HIV-1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors. Journal of Chemical Information and Modeling, 2014, 54, 987-991.	2.5	29
188	Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. Gut Pathogens, 2016, 8, 29.	1.6	29
189	Peptide Design Aided by Neural Networks:  Biological Activity of Artificial Signal Peptidase I Cleavage Sites. Biochemistry, 1998, 37, 3588-3593.	1.2	28
190	Rapid Evaluation and Optimization of Recombinant Protein Production Using GFP Tagging. Protein Expression and Purification, 2001, 21, 220-223.	0.6	28
191	Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction. Future Medicinal Chemistry, 2009, 1, 213-218.	1.1	28
192	Multivariate analyses of immune reconstitution in children after allo-SCT: risk-estimation based on age-matched leukocyte sub-populations. Bone Marrow Transplantation, 2010, 45, 613-621.	1.3	28
193	Future De Novo Drug Design. Molecular Informatics, 2014, 33, 397-402.	1.4	28
194	Identification of novel cannabinoid receptor ligandsvia evolutionary de novo design and rapid parallel synthesis. QSAR and Combinatorial Science, 2004, 23, 426-430.	1.5	27
195	Elucidation of the Structure and Intermolecular Interactions of a Reversible Cyclicâ€Peptide Inhibitor of the Proteasome by NMR Spectroscopy and Molecular Modeling. Angewandte Chemie - International Edition, 2010, 49, 3934-3938.	7.2	27
196	Concepts and Applications of & Drug and Peptide Design. Current Pharmaceutical Design, 2010, 16, 1656-1665.	0.9	27
197	Anthranilic acid derivatives as novel ligands for farnesoid X receptor (FXR). Bioorganic and Medicinal Chemistry, 2014, 22, 2447-2460.	1.4	27
198	Design of Naturalâ€Productâ€Inspired Multitarget Ligands by Machine Learning. ChemMedChem, 2019, 14, 1129-1134.	1.6	27

#	Article	IF	CITATIONS
199	Improved Anaerobic Use of Arginine by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 1623-1628.	1.4	26
200	New Allosteric Modulators of Metabotropic Glutamate Receptor 5 (mGluR5) Found by Ligand-Based Virtual Screening. ChemBioChem, 2005, 6, 620-625.	1.3	26
201	NIPALSTREE:  A New Hierarchical Clustering Approach for Large Compound Libraries and Its Application to Virtual Screening. Journal of Chemical Information and Modeling, 2006, 46, 2220-2229.	2.5	26
202	From Molecular Shape to Potent Bioactive Agents II: Fragmentâ€Based deâ€novo Design. ChemMedChem, 2009, 4, 45-48.	1.6	26
203	Macromolecular target prediction by self-organizing feature maps. Expert Opinion on Drug Discovery, 2017, 12, 271-277.	2.5	26
204	Characterisation of anticancer peptides at the single-cell level. Lab on A Chip, 2017, 17, 2933-2940.	3.1	26
205	Qualitative Highly Divergent Nuclear Export Signals Can Regulate Export by the Competition for Transport Cofactors in Vivo. Traffic, 2001, 2, 544-555.	1.3	25
206	Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks. Journal of Molecular Modeling, 2004, 10, 204-211.	0.8	25
207	MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation. European Journal of Pharmacology, 2009, 608, 84-90.	1.7	25
208	PhAST: Pharmacophore alignment search tool. Journal of Computational Chemistry, 2009, 30, 761-771.	1.5	25
209	Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. Journal of Computer-Aided Molecular Design, 2009, 23, 869-881.	1.3	25
210	Synergism of virtual screening and medicinal chemistry: Identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. Bioorganic and Medicinal Chemistry, 2009, 17, 5708-5715.	1.4	25
211	Exploring the chemical space of \hat{l}^3 -secretase modulators. Trends in Pharmacological Sciences, 2010, 31, 402-410.	4.0	25
212	Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors. PLoS ONE, 2011, 6, e18253.	1.1	25
213	Identification of UV-protective Activators of Nuclear Factor Erythroid-derived 2-Related Factor 2 (Nrf2) by Combining a Chemical Library Screen with Computer-based Virtual Screening. Journal of Biological Chemistry, 2012, 287, 33001-33013.	1.6	25
214	Molecular characterization of EP6â€"A novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochemical Pharmacology, 2012, 83, 228-240.	2.0	25
215	Robust molecular representations for modelling and design derived from atomic partial charges. Chemical Communications, 2016, 52, 681-684.	2.2	25
216	Analysis of Cleavage-Site Patterns in Protein Precursor Sequences with a Perceptron-Type Neural Network. Biochemical and Biophysical Research Communications, 1993, 194, 951-959.	1.0	24

#	Article	IF	Citations
217	Caspase-mediated degradation of human 5-lipoxygenase in B lymphocytic cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13164-13169.	3.3	24
218	The Plasmodium Export Element Revisited. PLoS ONE, 2008, 3, e1560.	1.1	24
219	â€~Fuzziness' in pharmacophore-based virtual screening and de novo design. Drug Discovery Today: Technologies, 2010, 7, e237-e244.	4.0	24
220	Rational Design of Membraneâ€Poreâ€Forming Peptides. Small, 2017, 13, 1701316.	5.2	24
221	Scaffold-Hopping from Synthetic Drugs by Holistic Molecular Representation. Scientific Reports, 2018, 8, 16469.	1.6	24
222	Artificial neural networks and simulated molecular evolution are potential tools for sequence-oriented protein design. Bioinformatics, 1994, 10, 635-645.	1.8	23
223	Evaluation of Distance Metrics for Ligand-Based Similarity Searching. ChemBioChem, 2004, 5, 538-540.	1.3	23
224	The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. Journal of Computer-Aided Molecular Design, 2008, 22, 59-68.	1.3	23
225	Prediction of turn types in protein structure by machineâ€learning classifiers. Proteins: Structure, Function and Bioinformatics, 2009, 74, 344-352.	1.5	23
226	Steering Target Selectivity and Potency by Fragmentâ€Based De Novo Drug Design. Angewandte Chemie - International Edition, 2013, 52, 10006-10009.	7.2	23
227	De novo design and optimization of Aurora A kinase inhibitors. Chemical Science, 2013, 4, 1229.	3.7	23
228	Computer-assisted quantification of motile and invasive capabilities of cancer cells. Scientific Reports, 2015, 5, 15338.	1.6	23
229	Chemography of Natural Product Space. Planta Medica, 2015, 81, 429-435.	0.7	23
230	Site of Metabolism Prediction Based on abâ€initio Derived Atom Representations. ChemMedChem, 2017, 12, 606-612.	1.6	23
231	A Virtual Screening Filter for Identification of Cytochrome P450 2C9 (CYP2C9) Inhibitors. QSAR and Combinatorial Science, 2007, 26, 618-628.	1.5	22
232	Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity. PLoS ONE, 2008, 3, e2767.	1.1	22
233	Architectural Repertoire of Ligandâ€Binding Pockets on Protein Surfaces. ChemBioChem, 2010, 11, 556-563.	1.3	22
234	Advanced flowcytometric analysis of regulatory T cells: CD127 downregulation early post stem cell transplantation and altered Treg/CD3+CD4+-ratio in severe GvHD or relapse. Journal of Immunological Methods, 2011, 373, 36-44.	0.6	22

#	Article	IF	CITATIONS
235	Drugs by Numbers: Reactionâ€Driven De Novo Design of Potent and Selective Anticancer Leads. Angewandte Chemie - International Edition, 2013, 52, 4676-4681.	7.2	22
236	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cellâ€based Compound Discovery and Target Prediction. Angewandte Chemie - International Edition, 2017, 56, 13021-13025.	7.2	22
237	Total Synthesis of Ripostatin B and Structure–Activity Relationship Studies on Ripostatin Analogs. Journal of Organic Chemistry, 2018, 83, 7150-7172.	1.7	22
238	New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. Oncotarget, 2017, 8, 1007-1022.	0.8	22
239	Multi-space classification for predicting GPCR-ligands. Molecular Diversity, 2005, 9, 371-383.	2.1	21
240	SOMMER: self-organising maps for education and research. Journal of Molecular Modeling, 2006, 13, 225-228.	0.8	21
241	Searching for Drug Scaffolds with 3D Pharmacophores and Neural Network Ensembles. Angewandte Chemie - International Edition, 2007, 46, 5336-5339.	7.2	21
242	Distance phenomena in highâ€dimensional chemical descriptor spaces: Consequences for similarityâ€based approaches. Journal of Computational Chemistry, 2009, 30, 2285-2296.	1.5	21
243	Quinolin-4($1 < i > H < /i >$)-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria. Journal of Medicinal Chemistry, 2013, 56, 4811-4815.	2.9	21
244	Structural insights on cholesterol endosynthesis: Binding of squalene and 2,3-oxidosqualene to supernatant protein factor. Journal of Structural Biology, 2015, 190, 261-270.	1.3	21
245	MetScore: Site of Metabolism Prediction Beyond Cytochrome P450 Enzymes. ChemMedChem, 2018, 13, 2281-2289.	1.6	21
246	î"-Quantum machine-learning for medicinal chemistry. Physical Chemistry Chemical Physics, 2022, 24, 10775-10783.	1.3	21
247	Development of simple fitness landscapes for peptides by artificial neural filter systems. Biological Cybernetics, 1995, 73, 245-254.	0.6	20
248	Comparison of Three Holographic Fingerprint Descriptors and their Binary Counterparts. QSAR and Combinatorial Science, 2005, 24, 961-967.	1.5	20
249	From Molecular Shape to Potent Bioactive Agents I: Bioisosteric Replacement of Molecular Fragments. ChemMedChem, 2009, 4, 41-44.	1.6	20
250	Simulated Molecular Evolution for Anticancer Peptide Design. Angewandte Chemie - International Edition, 2019, 58, 1674-1678.	7.2	20
251	Virtual Screening for PPAR Modulators Using a Probabilistic Neural Network. ChemMedChem, 2006, 1, 1346-1350.	1.6	19
252	Identification of Hits and Lead Structure Candidates with Limited Resources by Adaptive Optimization. Journal of Chemical Information and Modeling, 2008, 48, 1473-1491.	2.5	19

#	Article	IF	CITATIONS
253	Scaffold hopping from synthetic RXR modulators by virtual screening and <i>de novo</i> design. MedChemComm, 2018, 9, 1289-1292.	3.5	19
254	Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by first-principles interaction free energies. Journal of Cheminformatics, 2019, 11, 59.	2.8	19
255	In Silico Target Prediction for Small Molecules. Methods in Molecular Biology, 2019, 1888, 273-309.	0.4	19
256	A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Scientific Reports, 2020, 10, 10563.	1.6	19
257	A Pseudo-Ligand Approach to Virtual Screening. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 359-364.	0.6	18
258	Reaction-MQL: Line Notation for Functional Transformation. Journal of Chemical Information and Modeling, 2009, 49, 6-12.	2.5	18
259	Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorganic and Medicinal Chemistry, 2013, 21, 7874-7883.	1.4	18
260	Matrixâ€based Molecular Descriptors for Prospective Virtual Compound Screening. Molecular Informatics, 2017, 36, 1600091.	1.4	18
261	Optimization of a Pharmacophore-based Correlation Vector Descriptor for Similarity Searching. QSAR and Combinatorial Science, 2004, 23, 19-22.	1.5	17
262	Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MedChemComm, 2018, 9, 1538-1546.	3.5	17
263	Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenaseâ€1 Inhibitors by Automated De Novo Design. Advanced Science, 2021, 8, e2100832.	5.6	17
264	Mapping of proteinase active sites by projection of surface-derived correlation vectors. Journal of Computational Chemistry, 1999, 20, 336-347.	1.5	16
265	Combinatorial chemistry by ant colony optimization. Future Medicinal Chemistry, 2014, 6, 267-280.	1.1	16
266	Design of MHC I stabilizing peptides by agent-based exploration of sequence space. Protein Engineering, Design and Selection, 2007, 20, 99-108.	1.0	15
267	Aryl Bisâ€Sulfonamide Inhibitors of IspF from <i>Arabidopsis thaliana</i> and <i>Plasmodium falciparum</i> ChemMedChem, 2015, 10, 2090-2098.	1.6	15
268	Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties. Bioorganic and Medicinal Chemistry, 2015, 23, 3490-3498.	1.4	15
269	Sparse Neural Network Models of Antimicrobial Peptideâ€Activity Relationships. Molecular Informatics, 2016, 35, 606-614.	1.4	15
270	Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Analytical Chemistry, 2018, 90, 5306-5313.	3.2	15

#	Article	IF	Citations
271	De novo Molecular Design with Generative Long Short-term Memory. Chimia, 2019, 73, 1006.	0.3	15
272	Evolutionary optimization in multimodal search space. Biological Cybernetics, 1996, 74, 203-207.	0.6	14
273	Proteinâ€protein docking by shapeâ€complementarity and property matching. Journal of Computational Chemistry, 2010, 31, 1919-1928.	1.5	14
274	Fate of primary cells at the G1/S boundary after polo-like kinase 1 inhibition by SBE13. Cell Cycle, 2011, 10, 708-720.	1.3	14
275	Molecular pharmacological profile of a novel thiazolinoneâ€based direct and selective 5â€lipoxygenase inhibitor. British Journal of Pharmacology, 2012, 165, 2304-2313.	2.7	14
276	Virtual screening for compounds that mimic protein–protein interface epitopes. Journal of Computational Chemistry, 2012, 33, 573-579.	1.5	14
277	Flashback Forward: Reaction-Driven De Novo Design of Bioactive Compounds. Synlett, 2014, 25, 170-178.	1.0	14
278	Vanillin-derived antiproliferative compounds influence Plk1 activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5063-5069.	1.0	14
279	Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacological Research, 2015, 102, 53-60.	3.1	14
280	ChemSpaceShuttle: A tool for data mining in drug discovery by classification, projection, and 3D visualization. QSAR and Combinatorial Science, 2003, 22, 549-559.	1.5	13
281	Assay Related Target Similarity (ARTS) - Chemogenomics Approach for Quantitative Comparison of Biological Targets. Journal of Chemical Information and Modeling, 2011, 51, 1897-1905.	2.5	13
282	Designing the molecular future. Journal of Computer-Aided Molecular Design, 2012, 26, 115-120.	1.3	13
283	Identification of pirinixic acid derivatives bearing a 2-aminothiazole moiety combines dual PPARÎ \pm / \hat{l}^3 activation and dual 5-LO/mPGES-1 inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3757-3763.	1.0	13
284	Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways. Cell Chemical Biology, 2018, 25, 1095-1106.e23.	2.5	13
285	Introducing the CSP Analyzer: A novel Machine Learning-based application for automated analysis of two-dimensional NMR spectra in NMR fragment-based screening. Computational and Structural Biotechnology Journal, 2020, 18, 603-611.	1.9	13
286	Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	13
287	Structure optimization of an artificial neural filter detecting membrane-spanning amino acid sequences. Biopolymers, 1996, 38, 13-29.	1.2	12
288	Novel Pirinixic Acids as PPARα Preferential Dual PPARα∫γ Agonists. QSAR and Combinatorial Science, 2009, 28, 576-586.	1.5	12

#	Article	IF	CITATIONS
289	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. Molecular Informatics, 2012, 31, 21-26.	1.4	12
290	Exhaustive Proteome Mining for Functional MHC-I Ligands. ACS Chemical Biology, 2013, 8, 1876-1881.	1.6	12
291	Fractal Dimensions of Macromolecular Structures. Molecular Informatics, 2014, 33, 588-596.	1.4	12
292	<i>De novo</i> Drug Design – Ye olde Scoring Problem Revisited. Molecular Informatics, 2017, 36, 1681031.	1.4	12
293	Peptide–Membrane Interaction between Targeting and Lysis. ACS Chemical Biology, 2017, 12, 2254-2259.	1.6	12
294	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie, 2019, 131, 10906-10917.	1.6	12
295	Impact of different software implementations on the performance of the Maxmin method for diverse subset selection. Molecular Diversity, 2004, 8, 421-425.	2.1	11
296	GPCR Targeted Library Design: Novel Dopamine D3 Receptor Ligands. ChemMedChem, 2007, 2, 1000-1005.	1.6	11
297	Rational design of a pirinixic acid derivative that acts as subtype-selective PPARγ modulator. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2469-2473.	1.0	11
298	Truxillic acid derivatives act as peroxisome proliferator-activated receptor \hat{I}^3 activators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2920-2923.	1.0	11
299	Target Profile Prediction and Practical Evaluation of a Biginelli-Type Dihydropyrimidine Compound Library. Pharmaceuticals, 2011, 4, 1236-1247.	1.7	11
300	Potent Inhibitors of 5‣ipoxygenase Identified using Pseudoreceptors. ChemMedChem, 2011, 6, 1001-1005.	1.6	11
301	Von komplexen Naturstoffen zu synthetisch leicht zugÃ ¤ glichen Mimetika mithilfe von computergestütztem Deâ€novoâ€Design. Angewandte Chemie, 2016, 128, 6901-6904.	1.6	11
302	Quantification of hydrolyzed peptides and proteins by amino acid fluorescence. Journal of Peptide Science, 2018, 24, e3113.	0.8	11
303	Prediction of the Secondary Structure of Proteins from the Amino Acid Sequence with Artificial Neural Networks. Angewandte Chemie International Edition in English, 1993, 32, 1141-1143.	4.4	10
304	H-BloX: visualizing alignment block entropies. Journal of Molecular Graphics and Modelling, 2001, 19, 304-306.	1.3	10
305	Structure-Based Virtual Screening of FGFR Inhibitors. BioDrugs, 2007, 21, 31-45.	2.2	10
306	Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. Chemical Communications, 2015, 51, 7478-7481.	2.2	10

#	Article	IF	CITATIONS
307	Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths. Molecular Informatics, 2019, 38, 1800115.	1.4	10
308	Synergism of Shrewâ€1's Signal Peptide and Transmembrane Segment Required for Plasma Membrane Localization. Traffic, 2008, 9, 1344-1353.	1.3	9
309	Domain Organization of Long Autotransporter Signal Sequences. Bioinformatics and Biology Insights, 2009, 3, BBI.S3411.	1.0	9
310	In Silico Characterization of Ligand Binding Modes in the Human Histamine H ₄ Receptor and their Impact on Receptor Activation. ChemBioChem, 2010, 11, 1850-1855.	1.3	9
311	Automated Docking of Flexible Molecules Into Receptor Binding Sites by Ligand Selfâ€Organization In Situ. Molecular Informatics, 2010, 29, 189-193.	1.4	9
312	Missing Value Estimation for Compoundâ€Target Activity Data. Molecular Informatics, 2010, 29, 678-684.	1.4	9
313	Local neighborhood behavior in a combinatorial library context. Journal of Computer-Aided Molecular Design, 2011, 25, 237-252.	1.3	9
314	Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein. EBioMedicine, 2015, 2, 386-395.	2.7	9
315	Designing Multiâ€ŧarget Compound Libraries with Gaussian Process Models. Molecular Informatics, 2016, 35, 192-198.	1.4	9
316	Synthetic Activators of Cell Migration Designed by Constructive Machine Learning. ChemistryOpen, 2019, 8, 1303-1308.	0.9	9
317	High-mass MALDI-MS unravels ligand-mediated G protein–coupling selectivity to GPCRs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
318	A neuro-fuzzy approach to virtual screening in molecular bioinformatics. Fuzzy Sets and Systems, 2005, 152, 67-82.	1.6	8
319	Pharmacophore alignment search tool: Influence of canonical atom labeling on similarity searching. Journal of Computational Chemistry, 2010, 31, 2810-2826.	1.5	8
320	Multistep Virtual Screening for Rapid and Efficient Identification of Nonâ€Nucleoside Bacterial Thymidine Kinase Inhibitors. Chemistry - A European Journal, 2010, 16, 9630-9637.	1.7	8
321	Target Profile Prediction: Crossâ€Activation of Peroxisome Proliferatorâ€Activated Receptor (PPAR) and Farnesoid X Receptor (FXR). Molecular Informatics, 2010, 29, 287-292.	1.4	8
322	Computational medicinal chemistry. Future Medicinal Chemistry, 2011, 3, 393-394.	1.1	8
323	Spherical Harmonics Coefficients for Ligand-Based Virtual Screening of Cyclooxygenase Inhibitors. PLoS ONE, 2011, 6, e21554.	1.1	8
324	Pharmacophore alignment search tool: Influence of scoring systems on textâ€based similarity searching. Journal of Computational Chemistry, 2011, 32, 1635-1647.	1.5	8

#	Article	IF	CITATIONS
325	Computational Resources for MHC Ligand Identification. Molecular Informatics, 2013, 32, 326-336.	1.4	8
326	Piloting the Membranolytic Activities of Peptides with a Selfâ€organizing Map. ChemBioChem, 2014, 15, 2225-2231.	1.3	8
327	Privilegierte Strukturen neu betrachtet. Angewandte Chemie, 2017, 129, 8079-8083.	1.6	8
328	Protein Folding Simulation by Particle Swarm Optimization. The Open Structural Biology Journal, 2007, $1,1$ -6.	0.1	8
329	Perplexity-Based Molecule Ranking and Bias Estimation of Chemical Language Models. Journal of Chemical Information and Modeling, 2022, 62, 1199-1206.	2.5	8
330	Lead identification and optimization of diaminopyrimidines as histamine H4 receptor ligands. Inflammation Research, 2010, 59, 249-251.	1.6	7
331	Editorial: Charting Chemical Space: Challenges and Opportunities for Artificial Intelligence and Machine Learning. Molecular Informatics, 2011, 30, 751-751.	1.4	7
332	Exploring the Structural Space of the Galectinâ€1–Ligand Interaction. ChemBioChem, 2017, 18, 1477-1481.	1.3	7
333	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cellâ€based Compound Discovery and Target Prediction. Angewandte Chemie, 2017, 129, 13201-13205.	1.6	7
334	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. Angewandte Chemie, 2017, 129, 11678-11682.	1.6	7
335	Polypharmacological Drugâ°'target Inference for Chemogenomics. Molecular Informatics, 2018, 37, e1800050.	1.4	7
336	Virtual Screening and Design with Machine Intelligence Applied to Pimâ€1 Kinase Inhibitors. Molecular Informatics, 2020, 39, e2000109.	1.4	7
337	Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. MAbs, 2020, 12, 1736975.	2.6	7
338	Adaptive Combinatorial Design of Focused Compound Libraries. Methods in Molecular Biology, 2010, 572, 135-147.	0.4	7
339	Coping with Polypharmacology by Computational Medicinal Chemistry. Chimia, 2014, 68, 648.	0.3	6
340	Shape Similarity by Fractal Dimensionality: An Application in the de novo Design of (â^')â€Englerin A Mimetics. ChemMedChem, 2020, 15, 566-570.	1.6	6
341	Al reflections in 2019. Nature Machine Intelligence, 2020, 2, 2-9.	8.3	6
342	In Silico Adoption of an Orphan Nuclear Receptor NR4A1. PLoS ONE, 2015, 10, e0135246.	1.1	6

#	Article	IF	CITATIONS
343	Mapping Chemical Structures to Markush Structures Using SMIRKS. Molecular Informatics, 2011, 30, 665-671.	1.4	5
344	From Theory to Bench Experiment by Computer-assisted Drug Design. Chimia, 2012, 66, 120.	0.3	5
345	Significance estimation for sequence-based chemical similarity searching (PhAST) and application to AuroraA kinase inhibitors. Future Medicinal Chemistry, 2012, 4, 1897-1906.	1.1	5
346	Attractors in Sequence Space: Peptide Morphing by Directed Simulated Evolution. Molecular Informatics, 2015, 34, 709-714.	1.4	5
347	The quantum chemical search for novel materials and the issue of data processing: The InfoMol project. Journal of Computational Science, 2016, 15, 65-73.	1.5	5
348	Scoring of <i>de novo</i> Designed Chemical Entities by Macromolecular Target Prediction. Molecular Informatics, 2017, 36, 1600110.	1.4	5
349	Engineering of a functional Î ³ -tocopherol transfer protein. Redox Biology, 2021, 38, 101773.	3.9	5
350	Identification of novel off targets of baricitinib and tofacitinib by machine learning with a focus on thrombosis and viral infection. Scientific Reports, 2022, 12, 7843.	1.6	5
351	Attractors in Sequence Space: Agentâ€Based Exploration of MHC I Binding Peptides. Molecular Informatics, 2010, 29, 65-74.	1.4	4
352	Antidiabetic sulfonylureas modulate farnesoid X receptor activation and target gene transcription. Future Medicinal Chemistry, 2010, 2, 575-586.	1.1	4
353	Long signal peptides of RGMa and DCBLD2 are dissectible into subdomains according to the NtraC model. Molecular BioSystems, 2011, 7, 942-951.	2.9	4
354	Discovery of \hat{I}^3 -Secretase Modulators with a Novel Activity Profile by Text-Based Virtual Screening. ACS Chemical Biology, 2012, 7, 1488-1495.	1.6	4
355	Adaptive Peptide Design. Chimia, 2013, 67, 859-863.	0.3	4
356	Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides. Biochemistry, 2020, 59, 3772-3781.	1.2	4
357	Molecular Scaffold Hopping via Holistic Molecular Representation. Methods in Molecular Biology, 2021, 2266, 11-35.	0.4	4
358	Integrating Virtual Screening Methods to the Quest for Novel Membrane Protein Ligands. Current Medicinal Chemistry - Central Nervous System Agents, 2001, 1, 99-112.	0.6	3
359	Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification ChemInform, 2004, 35, no.	0.1	3
360	MHC I Stabilizing Potential of Computer-Designed Octapeptides. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	3

#	Article	IF	CITATIONS
361	From Hits to Leads: Challenges for the Next Phase of Machine Learning in Medicinal Chemistry. Molecular Informatics, 2011, 30, 759-763.	1.4	3
362	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. Angewandte Chemie, 2016, 128, 12596-12599.	1.6	3
363	Big Data and Deep Learning: A New Age of Molecular Informatics?. Molecular Informatics, 2017, 36, 1780132.	1.4	3
364	Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 2020, 175, 36-43.	0.8	3
365	Bioaffinity Screening with a Rapid and Sample-Efficient Autosampler for Native Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 13342-13350.	3.2	3
366	Analysis of Mitochondrial and Chloroplast Targeting Signals by Neural Network Systems. , 1997, , 214-229.		3
367	Chapter 7. Fragment-based De Novo Design of Drug-like Molecules. , 2008, , 217-239.		3
368	De Novo Molecular Design with Chemical Language Models. Methods in Molecular Biology, 2022, 2390, 207-232.	0.4	3
369	Evolutionary optimization in multimodal search space. Biological Cybernetics, 1996, 74, 203-207.	0.6	3
370	Translating from Proteins to Ribonucleic Acids for Ligandâ€binding Site Detection. Molecular Informatics, 2022, 41, .	1.4	3
371	Vorhersage der SekundÃ r struktur von Proteinen aus der AminosÃ u resequenz mit kýnstlichen neuronalen Netzen. Angewandte Chemie, 1993, 105, 1192-1194.	1.6	2
372	Prediction of Human Pharmacokinetics Based on Preclinical In Vitro and In Vivo Data., 2002,, 81-104.		2
373	Bioisosteric Replacement of Molecular Scaffolds: From Natural Products to Synthetic Compounds. Natural Product Communications, 2008, 3, 1934578X0800300.	0.2	2
374	PocketGraph: graph representation of binding site volumes. Chemistry Central Journal, 2009, 3, .	2.6	2
375	Kernel learning for ligand-based virtual screening: discovery of a new PPARÎ 3 agonist. Journal of Cheminformatics, 2010, 2, .	2.8	2
376	Scaffold-hopping from aminoglycosides to small synthetic inhibitors of bacterial protein biosynthesis using a pseudoreceptor model. MedChemComm, 2011, 2, 181.	3.5	2
377	Pharmacophore alignment search tool: Influence of the third dimension on textâ€based similarity searching. Journal of Computational Chemistry, 2011, 32, 1618-1634.	1.5	2
378	Pharmacophore Alignment Search Tool (PhAST): Significance Assessment of Chemical Similarity. Molecular Informatics, 2013, 32, 625-646.	1.4	2

#	Article	IF	CITATIONS
379	Breaking the data barrier in computational medicinal chemistry. Future Medicinal Chemistry, 2014, 6, 245-246.	1.1	2
380	Systems Approaches and Big Data in <i>Molecular Informatics</i> i>. Molecular Informatics, 2015, 34, 2-2.	1.4	2
381	Identification of Chemokine Ligands by Biochemical Fragmentation and Simulated Peptide Evolution. Angewandte Chemie - International Edition, 2019, 58, 7138-7142.	7.2	2
382	Discovery of Novel Molecular Frameworks of Farnesoidâ€X Receptor Modulators by Ensemble Machine Learning. ChemistryOpen, 2019, 8, 3-3.	0.9	2
383	Discovery of Novel Molecular Frameworks of Farnesoidâ€X Receptor Modulators by Ensemble Machine Learning. ChemistryOpen, 2019, 8, 7-14.	0.9	2
384	Contributions to the knowledge of Neofulla (Plecoptera: Notonemouridae) from Chile and Argentina. Studies on Neotropical Fauna and Environment, 1990, 25, 249-251.	0.5	1
385	QSAR & Combinatorial Science Going Monthly in 2006. QSAR and Combinatorial Science, 2006, 25, 5-6.	1.5	1
386	QSAR/QSPR Modelling – Finding Rules in Noisy Data?. QSAR and Combinatorial Science, 2006, 25, 811-812.	1.5	1
387	From 1982 to 2003 to 2007 – Milestones in a Journal's History. QSAR and Combinatorial Science, 2007, 26, 5-9.	1.5	1
388	QSAR & Combinatorial Science: Transition to the Future. QSAR and Combinatorial Science, 2008, 27, 5-5.	1.5	1
389	Editorial: From <i>QSAR & Description Editorial: From <i 18="" 28="" <i="" editorial:="" f<="" from="" page="" td=""><td>1.5</td><td>1</td></i></i></i></i></i></i></i></i></i>	1.5	1
390	Virtual screening for PPAR-gamma ligands using the ISOAK molecular graph kernel and gaussian processes. Chemistry Central Journal, 2009, 3, .	2.6	1
391	PhAST: pharmacophore alignment search tool. Chemistry Central Journal, 2009, 3, .	2.6	1
392	Molecular Informatics Going "Fully Online― Molecular Informatics, 2014, 33, 2-2.	1.4	1
393	Target prediction by cascaded self-organizing maps for ligand de-orphaning and side-effect investigation. Journal of Cheminformatics, 2014, 6, .	2.8	1
394	In Silico Screening. , 2015, , 141-160.		1
395	Coping with Complexity in Ligand-Based De Novo Design. ACS Symposium Series, 2016, , 143-158.	0.5	1
396	Cheminformatics and the Mean. Molecular Informatics, 2018, 37, 1880132.	1.4	1

#	Article	IF	CITATIONS
397	SIG-02. RATIONAL TARGETING OF PRO-INVASIVE FGFR SIGNALING IN MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii113-ii113.	0.6	1
398	Identification of Synthetic Activators of Cancer Cell Migration by Hybrid Deep Learning. ChemBioChem, 2020, 21, 500-507.	1.3	1
399	Beamâ€Search zum automatisierten Entwurf und Scoring neuer RORâ€Liganden mithilfe maschineller Intelligenz**. Angewandte Chemie, 2021, 133, 19626-19632.	1.6	1
400	Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. Journal of Chemical Information and Modeling, 2021, 61, 5256-5268.	2.5	1
401	Development of simple fitness landscapes for peptides by artificial neural filter systems. Biological Cybernetics, 1995, 73, 245-254.	0.6	1
402	De novo design of peptides and proteins: machine-generated sequences by the PROSA program. Bioinformatics, 1994, 10, 75-77.	1.8	0
403	Lack of isodisomy for chromosome 22 in disomic meningiomas. Cytogenetic and Genome Research, 1995, 71, 139-141.	0.6	0
404	Analyse von Aminosäresequenzen mit künstlichen neuronalen Netzen. Chemie in Unserer Zeit, 1996, 30, 172-181.	0.1	0
405	A Hierarchical Clustering Approach for Large Compound Libraries ChemInform, 2005, 36, no.	0.1	0
406	QSAR & Combinatorial Science. QSAR and Combinatorial Science, 2005, 24, 201-202.	1.5	0
407	Challenges in Virtual Screening. QSAR and Combinatorial Science, 2006, 25, 1131-1131.	1.5	0
408	Classification and Prediction of Tripeptides Inhibiting HIV-1 Tat/TAR-RNA Interaction Using a Self-Organizing Map. Letters in Drug Design and Discovery, 2007, 4, 410-416.	0.4	0
409	QSAR & Combinatorial Science: Back to the Future. QSAR and Combinatorial Science, 2009, 28, 7-7.	1.5	0
410	SQUIRRELnovo: de novo design of a PPARÎ \pm agonist by bioisosteric replacement. Chemistry Central Journal, 2009, 3, .	2.6	0
411	Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. Chemistry Central Journal, 2009, 3, .	2.6	0
412	Fuzzy virtual ligands for virtual screening. Chemistry Central Journal, 2009, 3, .	2.6	0
413	Identification of Plk1 type II inhibitors by structure-based virtual screening. Chemistry Central Journal, 2009, 3, .	2.6	0
414	Virtual chemical reactions for drug design. Chemistry Central Journal, 2009, 3, .	2.6	0

#	Article	IF	CITATIONS
415	Pseudoreceptor-based pocket selection in a molecular dynamics simulation of the histamine H4 receptor. Chemistry Central Journal, 2009, 3, .	2.6	O
416	Molecular Informatics- From Models to Molecules and Systems. Molecular Informatics, 2010, 29, 9-9.	1.4	0
417	Visualization and virtual screening in molecular property spaces. Journal of Cheminformatics, 2011, 3,	2.8	0
418	Molecular Informatics – The First Year. Molecular Informatics, 2011, 30, 3-3.	1.4	0
419	Editorial: Molecular Informatics Gaining Impact. Molecular Informatics, 2012, 31, 615-615.	1.4	0
420	Editorial: Molecular Informatics A Leading Discipline in a Complex Emerging Field. Molecular Informatics, 2012, 31, 3-3.	1.4	0
421	Editorial: Sustained Success of Molecular Informatics. Molecular Informatics, 2013, 32, 3-3.	1.4	0
422	Peptide lineup against Gram-negative bacterial infection – first-in-class peptide inhibitor of H. pylori HtrA. Journal of Cheminformatics, 2014, 6, .	2.8	0
423	<i>Molecular Informatics</i> : From Models to Systems and Beyond. Molecular Informatics, 2016, 35, 2-2.	1.4	0
424	Identifizierung von Chemokinliganden durch biochemische Rezeptorfragmentierung und simulierte Peptidevolution. Angewandte Chemie, 2019, 131, 7212-7216.	1.6	0
425	Simulated Molecular Evolution for Anticancer Peptide Design. Angewandte Chemie, 2019, 131, 1688-1692.	1.6	0
426	POS0091â€OFF-TARGET PROFILING OF JANUS KINASE (JAK) INHIBITORS IN RHEUMATOID ARTHRITIS: A COMPUTER-BASED APPROACH FOR DRUG SAFETY STUDIES AND REPURPOSING. Annals of the Rheumatic Diseases, 2021, 80, 255.2-255.	0.5	0
427	Brain-like Processing and Classification of Chemical Data. , 2011, , 289-303.		0
428	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu] Molecular Design With Long Short-Term Memory Networks. Journal of Computer Aided Chemistry, 2019, 20, 35-42.	0.3	0
429	TBIO-08. The molecular basis for rational targeting of FGFR-driven growth and invasiveness in pediatric brain tumors. Neuro-Oncology, 2022, 24, i184-i184.	0.6	O