
Carrie A M Laboski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8162873/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement. Agronomy Journal, 2018, 110, 1-37.	0.9	212
2	Investigation of the Inorganic and Organic Phosphorus Forms in Animal Manure. Journal of Environmental Quality, 2012, 41, 901-910.	1.0	112
3	Changes in Soil Test Phosphorus Concentration After Application of Manure or Fertilizer. Soil Science Society of America Journal, 2003, 67, 544-554.	1.2	89
4	Effect of Fertilizer Nitrogen on Weed Emergence and Growth. Weed Science, 2008, 56, 714-721.	0.8	71
5	Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 2019, 164, 104872.	3.7	66
6	Dairy manure treatment effects on manure phosphorus fractionation and changes in soil test phosphorus. Biology and Fertility of Soils, 2013, 49, 987-999.	2.3	56
7	Influence of fertilizer management and soil fertility on tuber specific gravity: a review. American Journal of Potato Research, 2007, 84, 283-290.	0.5	52
8	Dry Matter and Nitrogen Uptake, Partitioning, and Removal across a Wide Range of Soybean Seed Yield Levels. Crop Science, 2017, 57, 2170-2182.	0.8	52
9	Application of Machine Learning Methodologies for Predicting Corn Economic Optimal Nitrogen Rate. Agronomy Journal, 2018, 110, 2596-2607.	0.9	49
10	IMPACT OF MANURE APPLICATION ON SOIL PHOSPHORUS SORPTION CHARACTERISTICS AND SUBSEQUENT WATER QUALITY IMPLICATIONS. Soil Science, 2004, 169, 440-448.	0.9	46
11	A Public–Industry Partnership for Enhancing Corn Nitrogen Research and Datasets: Project Description, Methodology, and Outcomes. Agronomy Journal, 2017, 109, 2371-2389.	0.9	40
12	Corn nitrogen rate recommendation tools' performance across eight US midwest corn belt states. Agronomy Journal, 2020, 112, 470-492.	0.9	38
13	Phosphorus and Potassium Uptake, Partitioning, and Removal across a Wide Range of Soybean Seed Yield Levels. Crop Science, 2017, 57, 2193-2204.	0.8	25
14	Changes in Soil Test Phosphorus Concentration After Application of Manure or Fertilizer. Soil Science Society of America Journal, 2003, 67, 544.	1.2	25
15	Effects of Manure Inorganic and Enzymatically Hydrolyzable Phosphorus on Soil Test Phosphorus. Soil Science Society of America Journal, 2014, 78, 1301-1309.	1.2	22
16	Sorption of Inorganic and Total Phosphorus from Dairy and Swine Slurries to Soil. Journal of Environmental Quality, 2006, 35, 1836-1843.	1.0	19
17	Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning. Remote Sensing, 2022, 14, 394.	1.8	19
18	United States Midwest Soil and Weather Conditions Influence Anaerobic Potentially Mineralizable Nitrogen, Soil Science Society of America Journal, 2019, 83, 1137-1147.	1.2	18

CARRIE A M LABOSKI

#	Article	IF	CITATIONS
19	Phosphorus Source Effects on Corn Utilization and Changes in Soil Test. Agronomy Journal, 2009, 101, 663-670.	0.9	17
20	Secondary and Micronutrient Uptake, Partitioning, and Removal across a Wide Range of Soybean Seed Yield Levels. Agronomy Journal, 2018, 110, 1328-1338.	0.9	13
21	Manure-Induced Soil-Water Repellency. Soil Science, 2011, 176, 576-581.	0.9	12
22	Manure Composition and Incorporation Effects on Phosphorus in Runoff Following Corn Biomass Removal. Journal of Environmental Quality, 2011, 40, 1963-1971.	1.0	11
23	Weather and soil in the US Midwest influence the effectiveness of single―and splitâ€nitrogen applications in corn production. Agronomy Journal, 2020, 112, 5288-5299.	0.9	11
24	Relating fourâ€day soil respiration to corn nitrogen fertilizer needs across 49 U.S. Midwest fields. Soil Science Society of America Journal, 2020, 84, 1195-1208.	1.2	11
25	Predicting Economic Optimal Nitrogen Rate with the Anaerobic Potentially Mineralizable Nitrogen Test. Agronomy Journal, 2019, 111, 3329-3338.	0.9	10
26	Soilâ€nitrogen, potentially mineralizableâ€nitrogen, and field condition information marginally improves corn nitrogen management. Agronomy Journal, 2020, 112, 4332-4343.	0.9	10
27	Soil sample timing, nitrogen fertilization, and incubation length influence anaerobic potentially mineralizable nitrogen. Soil Science Society of America Journal, 2020, 84, 627-637.	1.2	10
28	Improving publicly available corn nitrogen rate recommendation tools with soil and weather measurements. Agronomy Journal, 2021, 113, 2068-2090.	0.9	10
29	Estimating Nitrogen Mineralization of Composted Poultry Manure, Organic Fertilizers, and Green Manure Crops for Organic Sweet Corn Production on a Sandy Soil Under Laboratory Conditions. HortTechnology, 2012, 22, 37-43.	0.5	9
30	Maize legume intercropping systems in southern Mexico: A review of benefits and challenges. Ciencia Rural, 2022, 52, .	0.3	6
31	Adjusting corn nitrogen management by including a mineralizableâ€nitrogen test with the preplant and presidedress nitrate tests. Agronomy Journal, 2020, 112, 3050-3064.	0.9	5
32	Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula. Sustainability, 2021, 13, 11503.	1.6	5
33	Data from a public–industry partnership for enhancing corn nitrogen research. Agronomy Journal, 2021, 113, 4429.	0.9	4
34	Soil hydrologic grouping guide which soil and weather properties best estimate corn nitrogen need. Agronomy Journal, 2021, 113, 5541-5555.	0.9	4
35	Environmental Management of Phosphorus Fertilizers. Agronomy, 0, , 781-827.	0.2	4
36	Effect of Weed Management Strategy and Row Width on Nitrous Oxide Emissions in Soybean. Weed Science, 2015, 63, 962-971.	0.8	3