
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8162566/publications.pdf Version: 2024-02-01

ZHENC HONG LU

#	Article	lF	CITATIONS
1	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
2	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	15.6	1,868
3	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
4	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	19.8	894
5	Universal energy-level alignment of molecules on metal oxides. Nature Materials, 2012, 11, 76-81.	13.3	836
6	Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies. Advanced Functional Materials, 2012, 22, 4557-4568.	7.8	694
7	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
8	Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9, 3541.	5.8	536
9	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
10	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
11	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594-598.	13.7	358
12	Metal/Metalâ€Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO ₃ . Advanced Functional Materials, 2013, 23, 215-226.	7.8	326
13	Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Materials, 2013, 5, e55-e55.	3.8	322
14	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	15.6	303
15	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
16	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
17	Highly Efficient Blue Phosphorescence from Triarylboron-Functionalized Platinum(II) Complexes of <i>N</i> -Heterocyclic Carbenes. Journal of the American Chemical Society, 2012, 134, 13930-13933.	6.6	232
18	Strain analysis and engineering in halide perovskite photovoltaics. Nature Materials, 2021, 20, 1337-1346.	13.3	220

#	Article	IF	CITATIONS
19	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI ₃ Perovskite. Angewan Chemie - International Edition, 2021, 60, 16164-16170.	dte 7.2	210
20	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	8.8	208
21	Mes2B(p-4,4â€~-biphenyl-NPh(1-naphthyl)): A Multifunctional Molecule for Electroluminescent Devices. Chemistry of Materials, 2005, 17, 164-170.	3.2	195
22	The Inâ€Gap Electronic State Spectrum of Methylammonium Lead Iodide Singleâ€Crystal Perovskites. Advanced Materials, 2016, 28, 3406-3410.	11.1	187
23	Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films. Journal of Physical Chemistry C, 2010, 114, 19777-19781.	1.5	176
24	Highly Efficient Warm White Organic Lightâ€Emitting Diodes by Triplet Exciton Conversion. Advanced Functional Materials, 2013, 23, 705-712.	7.8	168
25	Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. Journal of Materials Chemistry C, 2015, 3, 8839-8843.	2.7	161
26	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	6.6	153
27	Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes with CIE <i>y</i> Value of 0.11 and External Quantum Efficiency up to 22.5%. Advanced Materials, 2018, 30, e1705005.	11.1	147
28	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
29	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
30	In Situ Backâ€Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1807435.	11.1	143
31	Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153.	11.1	139
32	Enhancing Phosphorescence and Electrophosphorescence Efficiency of Cyclometalated Pt(II) Compounds with Triarylboron. Advanced Functional Materials, 2010, 20, 3426-3439.	7.8	138
33	Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nature Photonics, 2020, 14, 227-233.	15.6	136
34	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
35	(1-Naphthyl)phenylamino functionalized three-coordinate organoboron compounds: syntheses, structures, and applications in OLEDs. Journal of Materials Chemistry, 2005, 15, 3326.	6.7	132
36	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2017, 29, 1702350.	11.1	126

#	Article	IF	CITATIONS
37	Nanostructured Magnetic Thin Films from Organometallic Block Copolymers: Pyrolysis of Self-Assembled Polystyrene- <i>block</i> -poly(ferrocenylethylmethylsilane). ACS Nano, 2008, 2, 263-270.	7.3	121
38	Doubleâ€5ided Junctions Enable Highâ€Performance Colloidalâ€Quantumâ€Dot Photovoltaics. Advanced Materials, 2016, 28, 4142-4148.	11.1	121
39	White Organic Light-Emitting Diodes for Solid-State Lighting. Journal of Display Technology, 2013, 9, 459-468.	1.3	118
40	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
41	Colloidal CdSe _{1–<i>x</i>} S _{<i>x</i>} Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Letters, 2015, 15, 4611-4615.	4.5	114
42	Fluorinated Phenoxy Boron Subphthalocyanines in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2010, 2, 1934-1944.	4.0	112
43	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11, 3674.	5.8	112
44	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	1.7	111
45	Impact of lattice distortion and electron doping on α-MoO3 electronic structure. Scientific Reports, 2014, 4, 7131.	1.6	107
46	Inâ€Situ Solidâ€&tate Generation of (BN) ₂ â€Pyrenes and Electroluminescent Devices. Angewandte Chemie - International Edition, 2015, 54, 15074-15078.	7.2	105
47	<i>N</i> â€Heterocyclic Carbazoleâ€Based Hosts for Simplified Singleâ€Layer Phosphorescent OLEDs with High Efficiencies. Advanced Materials, 2012, 24, 2922-2928.	11.1	104
48	Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO ₂ with High Activity and Tailored Selectivity. Advanced Science, 2017, 4, 1700252.	5.6	97
49	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021, 143, 15606-15615.	6.6	94
50	Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Advanced Materials, 2021, 33, e2006004.	11.1	86
51	Poisoning of Heterogeneous, Late Transition Metal Dehydrocoupling Catalysts by Boranes and Other Group 13 Hydrides. Journal of the American Chemical Society, 2005, 127, 5116-5124.	6.6	82
52	Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2017, 5, 12204-12210.	2.7	79
53	Multiple Self-Trapped Emissions in the Lead-Free Halide Cs ₃ Cu ₂ I ₅ . Journal of Physical Chemistry Letters, 2020, 11, 4326-4330.	2.1	79
54	Highly efficient blue phosphorescent and electroluminescent Ir(<scp>iii</scp>) compounds. Journal of Materials Chemistry C, 2013, 1, 441-450.	2.7	76

#	Article	IF	CITATIONS
55	Ordered 2D arrays of ferromagnetic Fe/Co nanoparticle rings from a highly metallized metallopolymer precursor. Journal of Materials Chemistry, 2004, 14, 1686.	6.7	73
56	Highly efficient orange electrophosphorescence from a trifunctional organoboron–Pt(ii) complex. Chemical Communications, 2011, 47, 755-757.	2.2	73
57	Bright Blue and White Electrophosphorescent Triarylborylâ€Functionalized C^Nâ€Chelate Pt(II) Compounds: Impact of Intramolecular Hydrogen Bonds and Ancillary Ligands. Advanced Functional Materials, 2014, 24, 1911-1927.	7.8	73
58	Bluishâ€Green BMes ₂ â€Functionalized Pt ^{II} Complexes for High Efficiency PhOLEDs: Impact of the BMes ₂ Location on Emission Color. Chemistry - A European Journal, 2012, 18, 11306-11316.	1.7	71
59	2,5-Functionalized Spiro-Bisiloles as Highly Efficient Yellow-Light Emitters in Electroluminescent Devices. Advanced Functional Materials, 2006, 16, 681-686.	7.8	68
60	High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 1463-1470.	3.2	68
61	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
62	Butylamineâ€Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. Advanced Materials, 2018, 30, e1803830.	11.1	67
63	Acceptor Properties of Boron Subphthalocyanines in Fullerene Free Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14813-14823.	1.5	66
64	Interface Structure of MoO3 on Organic Semiconductors. Scientific Reports, 2016, 6, 21109.	1.6	66
65	Impact of the Linker on the Electronic and Luminescent Properties of Diboryl Compounds: Molecules with Two BMes ₂ Groups and the Peculiar Behavior of 1,6-(BMes ₂) ₂ pyrene. Organometallics, 2008, 27, 6446-6456.	1.1	65
66	Pentafluorophenoxy Boron Subphthalocyanine As a Fluorescent Dopant Emitter in Organic Light Emitting Diodes. ACS Applied Materials & Interfaces, 2010, 2, 3147-3152.	4.0	60
67	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie - International Edition, 2021, 60, 2455-2463.	7.2	60
68	A Polyboryl-Functionalized Triazine as an Electron Transport Material for OLEDs. Organometallics, 2011, 30, 5552-5555.	1.1	59
69	A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Advanced Materials, 2020, 32, e1906199.	11.1	59
70	Pyrolysis of Highly Metallized Polymers:  Ceramic Thin Films Containing Magnetic CoFe Alloy Nanoparticles from a Polyferrocenylsilane with Pendant Cobalt Clusters. Chemistry of Materials, 2006, 18, 2591-2601.	3.2	58
71	Assessing the Potential Roles of Silicon and Germanium Phthalocyanines in Planar Heterojunction Organic Photovoltaic Devices and How Pentafluoro Phenoxylation Can Enhance ï€â€"ĭ€ Interactions and Device Performance. ACS Applied Materials & Interfaces, 2015, 7, 5076-5088.	4.0	58
72	Multifunctional Thermally Activated Delayed Fluorescence Emitters and Insight into Multicolorâ€Mechanochromism Promoted by Weak Intra―and Intermolecular Interactions. Advanced Optical Materials, 2019, 7, 1900727.	3.6	58

#	Article	IF	CITATIONS
73	Experimentally Validated Model for the Prediction of the HOMO and LUMO Energy Levels of Boronsubphthalocyanines. Journal of Physical Chemistry C, 2011, 115, 11709-11718.	1.5	57
74	Highly Efficient Deepâ€Blue Electrophosphorescent Pt(II) Compounds with Nonâ€Distorted Flat Geometry: Tetradentate versus Macrocyclic Chelate Ligands. Advanced Functional Materials, 2017, 27, 1604318.	7.8	57
75	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	11.1	57
76	ZnFe ₂ O ₄ Leaves Grown on TiO ₂ Trees Enhance Photoelectrochemical Water Splitting. Small, 2016, 12, 3181-3188.	5.2	56
77	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nature Communications, 2018, 9, 4003.	5.8	56
78	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 2021, 1, 100001.	1.7	54
79	Phthalimido-boronsubphthalocyanines: New Derivatives of Boronsubphthalocyanine with Bipolar Electrochemistry and Functionality in OLEDs ACS Applied Materials & Interfaces, 2011, 3, 3538-3544.	4.0	53
80	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	3.6	53
81	Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2019, 7, 1901440.	3.6	51
82	Interface Engineering in Organic Electronics: Energy‣evel Alignment and Charge Transport. Small Science, 2021, 1, 2000015.	5.8	51
83	Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 2016, 4, 9998-10004.	2.7	50
84	Highly Efficient and Robust Blue Phosphorescent Pt(II) Compounds with a Phenylâ€1,2,3â€ŧriazolyl and a Pyridylâ€1,2,4â€ŧriazolyl Chelate Core. Advanced Functional Materials, 2014, 24, 7257-7271.	7.8	49
85	Polyethylenimine (PEI) As an Effective Dopant To Conveniently Convert Ambipolar and p-Type Polymers into Unipolar n-Type Polymers. ACS Applied Materials & Interfaces, 2015, 7, 18662-18671.	4.0	49
86	Boron Subphthalocyanines as Triplet Harvesting Materials within Organic Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3121-3125.	2.1	48
87	Oxidized Gold Thin Films: An Effective Material for Highâ€Performance Flexible Organic Optoelectronics. Advanced Materials, 2010, 22, 2037-2040.	11.1	47
88	Highly efficient red iridium(<scp>iii</scp>) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. Journal of Materials Chemistry C, 2017, 5, 10220-10224.	2.7	47
89	Hybrid Organic/Inorganic Optical Upâ€Converter for Pixelâ€Less Nearâ€Infrared Imaging. Advanced Materials, 2012, 24, 3138-3142.	11.1	46
90	Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. Nano Letters, 2020, 20, 3694-3702.	4.5	46

#	Article	IF	CITATIONS
91	Blue phosphorescent N-heterocyclic carbene chelated Pt(<scp>ii</scp>) complexes with an α-duryl-β-diketonato ancillary ligand. Dalton Transactions, 2015, 44, 8433-8443.	1.6	45
92	Donorâ€Appended N,Câ€Chelate Organoboron Compounds: Influence of Donor Strength on Photochromic Behaviour. Chemistry - A European Journal, 2016, 22, 12464-12472.	1.7	44
93	Blue organic light-emitting diodes based on Mes2B [p-4,4′-biphenyl-NPh(1-naphthyl)]. Journal of Applied Physics, 2008, 103, 034509.	1.1	43
94	Cellulose Nanocrystal:Polymer Hybrid Optical Diffusers for Indexâ€Matchingâ€Free Light Management in Optoelectronic Devices. Advanced Optical Materials, 2017, 5, 1700430.	3.6	43
95	Deep-blue organic light-emitting diodes based on a doublet d–f transition cerium(III) complex with 100% exciton utilization efficiency. Light: Science and Applications, 2020, 9, 157.	7.7	43
96	Nearâ€Infrared Inorganic/Organic Optical Upconverter with an External Power Efficiency of >100%. Advanced Materials, 2010, 22, 4900-4904.	11.1	42
97	The position and frequency of fluorine atoms changes the electron donor/acceptor properties of fluorophenoxy silicon phthalocyanines within organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 24512-24524.	5.2	42
98	Bluish-Green Cu(I) Dimers Chelated with Thiophene Ring-Introduced Diphosphine Ligands for Both Singlet and Triplet Harvesting in OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 3262-3270.	4.0	42
99	The origin of the high work function of chlorinated indium tin oxide. NPG Asia Materials, 2013, 5, e57-e57.	3.8	41
100	Coâ€deposited Cu(l) Complex for Triâ€layered Yellow and White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2014, 24, 5385-5392.	7.8	40
101	Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts. Applied Physics Letters, 2010, 97, 023109.	1.5	39
102	Tunable Excitonic Processes at Organic Heterojunctions. Advanced Materials, 2016, 28, 649-654.	11.1	38
103	Enhanced CO ₂ Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO ₂ Nanotubes. Nano Letters, 2021, 21, 1311-1319.	4.5	35
104	Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells. Nano-Micro Letters, 2020, 12, 84.	14.4	33
105	Plasmonic Titanium Nitride Facilitates Indium Oxide CO ₂ Photocatalysis. Small, 2020, 16, e2005754.	5.2	32
106	Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells. ACS Energy Letters, 2021, 6, 468-476.	8.8	32
107	Charge Carrier Mobility in Fluorinated Phenoxy Boron Subphthalocyanines: Role of Solid State Packing. Crystal Growth and Design, 2012, 12, 1095-1100.	1.4	31
108	The mixed alloyed chemical composition of chloro-(chloro) _n -boron subnaphthalocyanines dictates their physical properties and performance in organic photovoltaic devices. Journal of Materials Chemistry A, 2016, 4, 9566-9577.	5.2	31

#	Article	IF	CITATIONS
109	Band Alignment at Anode/Organic Interfaces for Highly Efficient Simplified Blue-Emitting Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2010, 114, 16746-16749.	1.5	30
110	Efficient orange-red phosphorescent organic light-emitting diodes using an in situ synthesized copper(<scp>i</scp>) complex as the emitter. Journal of Materials Chemistry C, 2014, 2, 6333-6341.	2.7	30
111	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 6607-6615.	2.7	30
112	Lowâ€Dimensional Contact Layers for Enhanced Perovskite Photodiodes. Advanced Functional Materials, 2020, 30, 2001692.	7.8	30
113	A multi-zoned white organic light-emitting diode with high CRI and low color temperature. Scientific Reports, 2016, 6, 20517.	1.6	28
114	Highly Efficient Greenish‥ellow Phosphorescent Organic Lightâ€Emitting Diodes Based on Interzone Exciton Transfer. Advanced Functional Materials, 2013, 23, 3204-3211.	7.8	26
115	From chloro to fluoro, expanding the role of aluminum phthalocyanine in organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 5047-5053.	5.2	26
116	Mapping Energy Levels for Organic Heterojunctions. Advanced Materials, 2017, 29, 1700414.	11.1	26
117	Ability To Fine-Tune the Electronic Properties and Open-Circuit Voltage of Phenoxy-Boron Subphthalocyanines through Meta-Fluorination of the Axial Substituent. Journal of Physical Chemistry C, 2018, 122, 1091-1102.	1.5	25
118	Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror. Journal of Applied Physics, 2008, 103, 103112.	1.1	24
119	Highly Conductive and Wettable PEDOT:PSS for Simple and Efficient Organic/c‣i Planar Heterojunction Solar Cells. Solar Rrl, 2020, 4, 1900513.	3.1	22
120	Colloidal Quantum Dot Bulk Heterojunction Solids with Nearâ€Unity Charge Extraction Efficiency. Advanced Science, 2020, 7, 2000894.	5.6	22
121	Excitonâ€Stimulated Molecular Transformation in Organic Lightâ€Emitting Diodes. Advanced Materials, 2014, 26, 6729-6733.	11.1	21
122	Cubic structure of the mixed halide perovskite CH ₃ NH ₃ PbI _{3â^'x} Cl _x via thermal annealing. RSC Advances, 2015, 5, 85480-85485.	1.7	21
123	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	2.7	20
124	Energy disorder and energy level alignment between host and dopant in organic semiconductors. Communications Physics, 2019, 2, .	2.0	19
125	Molecular Orientation and Energy Levels at Organic Interfaces. Advanced Electronic Materials, 2016, 2, 1600306.	2.6	18
126	Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging. Applied Physics Letters, 2018, 112, .	1.5	18

#	Article	IF	CITATIONS
127	Cu(0)-RDRP as an efficient and low-cost synthetic route to blue-emissive polymers for OLEDs. Polymer Chemistry, 2019, 10, 3288-3297.	1.9	18
128	Stable, Bromine-Free, Tetragonal Perovskites with 1.7 eV Bandgaps via A-Site Cation Substitution. , 2020, 2, 869-872.		18
129	Red emissive organic light-emitting diodes based on codeposited inexpensive Cu ^I complexes. Journal of Materials Chemistry C, 2015, 3, 5835-5843.	2.7	17
130	Long-Range Energy Transfer and Singlet-Exciton Migration in Working Organic Light-Emitting Diodes. Physical Review Applied, 2016, 5, .	1.5	16
131	Outdoor Stability of Chloro–(Chloro) _{<i>n</i>} –Boron Subnaphthalocyanine and Chloro–Boron Subphthalocyanine as Electron Acceptors in Bilayer and Trilayer Organic Photovoltaics. ACS Applied Energy Materials, 2019, 2, 979-986.	2.5	16
132	Improving Bias-Stress Stability of p-Type Organic Field-Effect Transistors by Constructing an Electron Injection Barrier at the Drain Electrode/Semiconductor Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 41886-41895.	4.0	16
133	Disruptive and reactive interface formation of molybdenum trioxide on organometal trihalide perovskite. Applied Physics Letters, 2017, 110, .	1.5	15
134	Colloidal Quantum Dot Solar Cell Band Alignment using Two-Step Ionic Doping. , 2020, 2, 1583-1589.		15
135	Extraordinary Mass Transport and Selfâ€Assembly: A Pathway to Fabricate Luminescent CsPbBr ₃ and Lightâ€Emitting Diodes by Vaporâ€Phase Deposition. Advanced Materials Interfaces, 2020, 7, 2000506.	1.9	15
136	Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Communications Materials, 2022, 3, .	2.9	15
137	Static charge fluctuations inGa+-implanted silicon. Physical Review B, 1990, 41, 3284-3286.	1.1	14
138	Characterization of μ-oxo-(BsubPc) ₂ in Multiple Organic Photovoltaic Device Architectures: Comparing against and Combining with Cl-BsubPc. ACS Applied Materials & Interfaces, 2016, 8, 24712-24721.	4.0	14
139	Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. Nanoscale, 2019, 11, 10774-10781.	2.8	14
140	Auger-Electron-Stimulated Organic Electroluminescence at Ultralow Voltages Below the Energy Gap. Physical Review Applied, 2015, 3, .	1.5	13
141	Tailoring Mg:Ag functionalities for organic light-emitting diodes. Organic Electronics, 2018, 63, 41-46.	1.4	13
142	Glass transition temperatures in pure and composite organic thin-films. Organic Electronics, 2018, 60, 45-50.	1.4	13
143	Oxy phosphorus tetrabenzotriazacorrole: firming up the chemical structure and identifying organic photovoltaic functionality to leverage its unique dual absorbance. Journal of Materials Chemistry A, 2017, 5, 10978-10985.	5.2	12
144	Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. Nano Energy, 2019, 63, 103876.	8.2	12

#	Article	IF	CITATIONS
145	Transition Metal-Catalyzed Dissociation of Phosphineâ^'Gallane Adducts:  Isolation of Mechanistic Model Complexes and Heterogeneous Catalyst Poisoning Studies. Inorganic Chemistry, 2007, 46, 7394-7402.	1.9	11
146	Stability of organometal perovskites with organic overlayers. AIP Advances, 2015, 5, 087185.	0.6	11
147	Nonradiative Charge-Transfer Exciton Recombination at Organic Heterojunctions. Journal of Physical Chemistry C, 2016, 120, 21325-21329.	1.5	11
148	Stacking multiple connecting functional materials in tandem organic light-emitting diodes. Scientific Reports, 2017, 7, 43130.	1.6	11
149	Rational design of isophthalonitrile-based thermally activated delayed fluorescence emitters for OLEDs with high efficiency and slow efficiency roll-off. Dyes and Pigments, 2017, 147, 350-356.	2.0	11
150	Near-IR Optical Upconverter With Integrated Heterojunction Phototransistor and Organic Light-Emitting Diode. IEEE Photonics Technology Letters, 2009, 21, 1447-1449.	1.3	10
151	Considerations for the physical vapor deposition of high molar mass organic compounds. Vacuum, 2014, 109, 26-33.	1.6	10
152	Ultralow-voltage Auger-electron-stimulated organic light-emitting diodes. Journal of Photonics for Energy, 2016, 6, 036001.	0.8	10
153	Straightforward and Relatively Safe Process for the Fluoride Exchange of Trivalent and Tetravalent Group 13 and 14 Phthalocyanines. ACS Omega, 2019, 4, 5317-5326.	1.6	10
154	Black Phase-Changing Cathodes for High-Contrast Organic Light-Emitting Diodes. ACS Photonics, 2017, 4, 1316-1321.	3.2	9
155	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie, 2021, 133, 2485-2493.	1.6	9
156	Construction of Highâ€Quality Cu(I) Complexâ€Based WOLEDs with Dual Emissive Layers Achieved by an "Onâ€andâ€Off―Deposition Strategy. Advanced Optical Materials, 2019, 7, 1801612.	3.6	8
157	Highly efficient top-emission organic light-emitting diode on an oxidized aluminum anode. Journal of Applied Physics, 2019, 125, .	1.1	8
158	Molecular orientation and thermal stability of thin-film organic semiconductors. Organic Electronics, 2021, 88, 106014.	1.4	8
159	Measuring Energy Gaps of Organic Semiconductors by Electron Energy Loss Spectroscopies. Physica Status Solidi (B): Basic Research, 2022, 259, 2100459.	0.7	8
160	High contrast green OLEDs using inorganic metal multi layer. Synthetic Metals, 2011, 161, 2211-2214.	2.1	7
161	Abnormal thin film structures in vapor-phase deposited methylammonium lead iodide perovskite. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	7
162	On the Relationship Between Donor/Acceptor Interface Energy Levels and Open ircuit Voltages. Advanced Electronic Materials, 2017, 3, 1700115.	2.6	7

#	Article	IF	CITATIONS
163	Novel Benzimidazoleâ€Containing Heterocyclic Compounds: Synthesis, Physical Properties and OLED Application. ChemistrySelect, 2017, 2, 11206-11210.	0.7	7
164	Excitonic processes at organic heterojunctions. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	7
165	Exciton-triggered luminance degradation of organic light-emitting diodes. Organic Electronics, 2019, 69, 160-163.	1.4	7
166	Damageâ€Free Depth Profiling of Electronic Structures in Multilayered Organic Semiconductors by Photoelectron Spectroscopy and Cluster Ion Beam. Physica Status Solidi (B): Basic Research, 2021, 258, 2100130.	0.7	7
167	Organic/inorganic hybrid optical upconversion devices for nearâ€infrared imaging. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2594-2597.	0.8	6
168	Excitonic Creation of Highly Luminescent Defects In Situ in Working Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1700856.	3.6	6
169	Probing molecular orientations in thin films by x-ray photoelectron spectroscopy. AIP Advances, 2018, 8, 035218.	0.6	6
170	Optical design of connecting electrodes for tandem organic light-emitting diodes. Optics Letters, 2020, 45, 3561.	1.7	6
171	Improving the efficiency of red phosphorescent organic light emitting diodes by exciton management. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2537-2540.	0.8	5
172	CuPc:C ₆₀ nanocomposite: A pathway to control organic microstructure and phase transformation. Physica Status Solidi (B): Basic Research, 2015, 252, 545-552.	0.7	5
173	Quantifying Interdopant Exciton Processes in Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 3304-3309.	1.5	5
174	Determination of emitting dipole orientation in organic light emitting diodes. Organic Electronics, 2020, 78, 105611.	1.4	5
175	Chargeâ€Transport Processes in Host–Dopant Organic Semiconductors. Advanced Electronic Materials, 2020, 6, 1901147.	2.6	5
176	Formation of MoO ₃ /Organic Interfaces. Advanced Materials Interfaces, 2022, 9, 2101423.	1.9	5
177	Exciton dynamics of luminescent defects in aging organic light-emitting diodes. Journal of Applied Physics, 2017, 122, .	1.1	4
178	Dual Ag electrodes for semitransparent organic light-emitting diodes. Organic Electronics, 2018, 57, 98-103.	1.4	4
179	Reaction and Energy Levels at Oxide–Oxide Heterojunction Interfaces. Advanced Materials Interfaces, 2019, 6, 1901456.	1.9	4
180	Comparison of CuPc-based organic thin-film transistors made by different dielectric structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 012201.	0.6	3

#	Article	IF	CITATIONS
181	Nano-composites for enhanced catastrophic failure temperature of organic light-emitting diodes. Applied Physics Letters, 2018, 113, .	1.5	3
182	Molecular engineering of α and β peripherally tri-halogenated substituted boron subphthalocyanines as mixed alloys to control physical and electrochemical properties for organic photovoltaic applications. Molecular Systems Design and Engineering, 2021, 6, 308-326.	1.7	3
183	Thermally Stable Charge Transport Materials for Vaporâ€Phase Fabrication of Perovskite Devices. Advanced Photonics Research, 2021, 2, 2000140.	1.7	3
184	Improving bias-stress stability of p-type organic field-effect transistors by suppressing electron injection. Journal of Materials Science: Materials in Electronics, 2022, 33, 3726-3737.	1.1	3
185	Ytterbium oxide electron injection interface in organic light-emitting diode. Applied Physics Letters, 2022, 120, .	1.5	3
186	Nitrogen Distribution and Oxidation of HfOxNy Gate Dielectrics Deposited by MOCVD using [(C2H5)2N]4Hf with NO and O2. Materials Research Society Symposia Proceedings, 2004, 811, 19.	0.1	2
187	Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO ₂ with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 2017, 4, .	5.6	2
188	Energy Levels of Molecular Dopants in Organic Semiconductors. Advanced Materials Interfaces, 2020, 7, 2000720.	1.9	2
189	Effect of Ag cathode deposition rate on the performance of organic light-emitting diodes. Materials Science in Semiconductor Processing, 2020, 117, 105170.	1.9	2
190	Inorganic/Organic Hybrid Optical Upconversion Device. , 2007, , .		1
191	Enhancing Phosphorescence and Electrophosphorescence Efficiency of Cyclometalated Pt(II) Compounds with Triarylboron. Advanced Functional Materials, 2010, 20, 3425-3425.	7.8	1
192	Organic Light-Emitting Diodes: Silicon Nanocrystal OLEDs: Effect of Organic Capping Group on Performance (Small 23/2012). Small, 2012, 8, 3542-3542.	5.2	1
193	Exciton management for high brightness in organic light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 050998.	0.8	1
194	Failure of Fermi Level in Referencing Chemical Shift of Molecules on Solid Surfaces. Advanced Materials Interfaces, 2018, 5, 1800150.	1.9	1
195	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbl 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	1.6	1
196	Vaporâ€Phase Deposition of Highly Luminescent Embedded Perovskite Nanocrystals. Advanced Optical Materials, 0, , 2102809.	3.6	1
197	Hydrothermally carbonized xylem sap for use in chemosensors, on and off switches, and memory devices. Energy Reports, 2022, 8, 3213-3220.	2.5	1
198	Nearâ€infrared inorganic/organic hybrid optical upconverter with an embedded mirror. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S23.	0.8	0

199Energy Levels and Open-Circuit Voltages in Organic Solar Cells., 2018, , .0200Impact of Dopants on Charge Transport across Organic–Organic Semiconductor Junctions. Journal of Physical Chemistry C, 2021, 125, 23457-23462.1.50201Manipulating Electronic Processes at Organic Heterojunctions for Ultralow-Voltage OLEDs., 2022, , 255-275.0	#	Article	IF	CITATIONS
Manipulating Electronic Processes at Organic Heterojunctions for Ultralow-Voltage OLEDs. , 2022, ,	199	Energy Levels and Open-Circuit Voltages in Organic Solar Cells. , 2018, , .		0
	200	Impact of Dopants on Charge Transport across Organic–Organic Semiconductor Junctions. Journal of Physical Chemistry C, 2021, 125, 23457-23462.	1.5	0
	201			0