
Lars E Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8162115/publications.pdf Version: 2024-02-01

LADS F DIETDICH

#	Article	IF	CITATIONS
1	Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. Journal of Bacteriology, 2022, 204, JB0043321.	2.2	24
2	Gradients and consequences of heterogeneity in biofilms. Nature Reviews Microbiology, 2022, 20, 593-607.	28.6	84
3	Redox cycling-based detection of phenazine metabolites secreted from <i>Pseudomonas aeruginosa</i> in nanopore electrode arrays. Analyst, The, 2021, 146, 1346-1354.	3.5	10
4	Pseudomonas aeruginosa PA14 produces R-bodies, extendable protein polymers with roles in host colonization and virulence. Nature Communications, 2021, 12, 4613.	12.8	7
5	Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. MBio, 2021, 12, e0176321.	4.1	26
6	Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. ELife, 2021, 10, .	6.0	36
7	Biofilm Inhibitor Taurolithocholic Acid Alters Colony Morphology, Specialized Metabolism, and Virulence of <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2020, 6, 603-612.	3.8	10
8	Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in <i>Pseudomonas aeruginosa</i> Biofilms. Journal of Bacteriology, 2020, 202, .	2.2	23
9	Mid-infrared metabolic imaging with vibrational probes. Nature Methods, 2020, 17, 844-851.	19.0	69
10	Phenazine oxidation by a distal electrode modulates biofilm morphogenesis. Biofilm, 2020, 2, 100025.	3.8	11
11	Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. Journal of Bacteriology, 2020, 202, .	2.2	33
12	Evaluation of Data Analysis Platforms and Compatibility with MALDI-TOF Imaging Mass Spectrometry Data Sets. Journal of the American Society for Mass Spectrometry, 2020, 31, 1313-1320.	2.8	5
13	Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends in Microbiology, 2020, 28, 732-743.	7.7	65
14	Sensory Domains That Control Cyclic di-GMP-Modulating Proteins: A Critical Frontier in Bacterial Signal Transduction. , 2020, , 137-158.		4
15	Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nature Communications, 2019, 10, 762.	12.8	176
16	Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms. Journal of Bacteriology, 2018, 200, .	2.2	29
17	Paraffin Embedding and Thin Sectioning of Microbial Colony Biofilms for Microscopic Analysis. Journal of Visualized Experiments, 2018, , .	0.3	14
18	The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of <scp>d</scp> - and <scp>l</scp> -Lactate and Metabolic Cross-Feeding. MBio, 2018, 9, .	4.1	33

LARS E DIETRICH

#	Article	IF	CITATIONS
19	Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Microbiology (United Kingdom), 2018, 164, 790-800.	1.8	19
20	Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5236-E5245.	7.1	82
21	Bifunctionality of a biofilm matrix protein controlled by redox state. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6184-E6191.	7.1	57
22	Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer. Nature Communications, 2017, 8, 160.	12.8	14
23	Redox-Based Regulation of Bacterial Development and Behavior. Annual Review of Biochemistry, 2017, 86, 777-797.	11.1	52
24	Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. ELife, 2017, 6, .	6.0	57
25	An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. ELife, 2017, 6, .	6.0	77
26	Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network. PLoS Computational Biology, 2017, 13, e1005677.	3.2	38
27	A distinct holoenzyme organization for two-subunit pyruvate carboxylase. Nature Communications, 2016, 7, 12713.	12.8	14
28	The <i>Pseudomonas aeruginosa</i> efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3538-47.	7.1	145
29	Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nature Communications, 2016, 7, 10535.	12.8	105
30	Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. Journal of Molecular Biology, 2015, 427, 3695-3708.	4.2	127
31	Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models. Applied and Environmental Microbiology, 2015, 81, 8414-8426.	3.1	64
32	Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature, 2015, 518, 120-124.	27.8	36
33	Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines. PLoS Pathogens, 2014, 10, e1004480.	4.7	132
34	An Aerobic Exercise: Defining the Roles of Pseudomonas aeruginosa Terminal Oxidases. Journal of Bacteriology, 2014, 196, 4203-4205.	2.2	12
35	Redox-driven regulation of microbial community morphogenesis. Current Opinion in Microbiology, 2014, 18, 39-45.	5.1	64
36	Morphological optimization for access to dual oxidants in biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 208-213	7.1	82

LARS E DIETRICH

#	Article	IF	CITATIONS
37	Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nature Communications, 2014, 5, 3256.	12.8	142
38	Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria. Cell Reports, 2013, 4, 697-708.	6.4	134
39	Speciesâ€specific residues calibrate <scp>SoxR</scp> sensitivity to redoxâ€active molecules. Molecular Microbiology, 2013, 87, 368-381.	2.5	30
40	Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines. MBio, 2013, 4, e00526-12.	4.1	208
41	Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State. Journal of Bacteriology, 2013, 195, 1371-1380.	2.2	268
42	Redundant phenazine operons in <i>Pseudomonas aeruginosa</i> exhibit environment-dependent expression and differential roles in pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19420-19425.	7.1	158
43	Redox Eustress: Roles for Redox-Active Metabolites in Bacterial Signaling and Behavior. Antioxidants and Redox Signaling, 2012, 16, 658-667.	5.4	39
44	The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation. PLoS ONE, 2012, 7, e35499.	2.5	53
45	A shared mechanism of SoxR activation by redoxâ€cycling compounds. Molecular Microbiology, 2011, 79, 1119-1122.	2.5	35
46	Biological Control of Rhizoctonia Root Rot on Bean by Phenazine- and Cyclic Lipopeptide-Producing <i>Pseudomonas</i> CMR12a. Phytopathology, 2011, 101, 996-1004.	2.2	88
47	Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Research in Microbiology, 2010, 161, 187-191.	2.1	143
48	Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria. Science, 2008, 321, 1203-1206.	12.6	394
49	DNA binding shifts the redox potential of the transcription factor SoxR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3684-3689.	7.1	68
50	Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas aeruginosa PA14. Journal of Bacteriology, 2007, 189, 6372-6381.	2.2	291
51	The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2006, 61, 1308-1321.	2.5	639
52	Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nature Chemical Biology, 2006, 2, 71-78.	8.0	483
53	The co-evolution of life and Earth. Current Biology, 2006, 16, R395-R400.	3.9	55
54	The co-evolution of life and Earth. Current Biology, 2006, 16, 1579.	3.9	0

LARS E DIETRICH

#	Article	IF	CITATIONS
55	Palmitoylation determines the function of Vac8 at the yeast vacuole. Journal of Cell Science, 2006, 119, 2477-2485.	2.0	49
56	The SNARE Ykt6 is released from yeast vacuoles during an early stage of fusion. EMBO Reports, 2005, 6, 245-250.	4.5	32
57	The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17366-17371.	7.1	53
58	ATP-independent Control of Vac8 Palmitoylation by a SNARE Subcomplex on Yeast Vacuoles. Journal of Biological Chemistry, 2005, 280, 15348-15355.	3.4	17
59	The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO Journal, 2004, 23, 45-53.	7.8	72
60	On the mechanism of protein palmitoylation. EMBO Reports, 2004, 5, 1053-1057.	4.5	117
61	Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends in Biochemical Sciences, 2004, 29, 682-688.	7.5	138
62	Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 111-119.	4.1	44
63	Biochemical characterization of the vacuolar palmitoyl acyltransferase. FEBS Letters, 2003, 540, 101-105.	2.8	10
64	The Transmembrane Domain of Vam3 Affects the Composition ofcis- and trans-SNARE Complexes to Promote Homotypic Vacuole Fusion. Journal of Biological Chemistry, 2003, 278, 1656-1662.	3.4	37
65	Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion. EMBO Journal, 2001, 20, 3145-3155.	7.8	80
66	Structural Consequences of Cyclophilin A Binding on Maturational Refolding in Human Immunodeficiency Virus Type 1 Capsid Protein. Journal of Virology, 2001, 75, 4721-4733.	3.4	20