
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8161918/publications.pdf Version: 2024-02-01

ΥΠΥΓΛΝ ΗΕ

#	Article	IF	CITATIONS
1	The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nature Reviews Microbiology, 2009, 7, 226-236.	13.6	1,405
2	Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 2020, 369, 1603-1607.	6.0	678
3	Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet, The, 2004, 363, 938-947.	6.3	476
4	Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochemical and Biophysical Research Communications, 2004, 324, 773-781.	1.0	366
5	N-Substituted Pyrrole Derivatives as Novel Human Immunodeficiency Virus Type 1 Entry Inhibitors That Interfere with the gp41 Six-Helix Bundle Formation and Block Virus Fusion. Antimicrobial Agents and Chemotherapy, 2004, 48, 4349-4359.	1.4	253
6	Receptor-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains Multiple Conformation-Dependent Epitopes that Induce Highly Potent Neutralizing Antibodies. Journal of Immunology, 2005, 174, 4908-4915.	0.4	230
7	Design and Evaluation of Sifuvirtide, a Novel HIV-1 Fusion Inhibitor. Journal of Biological Chemistry, 2008, 283, 11126-11134.	1.6	200
8	Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Journal of Virology, 2020, 94, .	1.5	164
9	Identification of Immunodominant Sites on the Spike Protein of Severe Acute Respiratory Syndrome (SARS) Coronavirus: Implication for Developing SARS Diagnostics and Vaccines. Journal of Immunology, 2004, 173, 4050-4057.	0.4	145
10	Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16332-16337.	3.3	129
11	Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochemical and Biophysical Research Communications, 2004, 325, 445-452.	1.0	120
12	Antigenic and Immunogenic Characterization of Recombinant Baculovirus-Expressed Severe Acute Respiratory Syndrome Coronavirus Spike Protein: Implication for Vaccine Design. Journal of Virology, 2006, 80, 5757-5767.	1.5	113
13	Cross-Neutralization of Human and Palm Civet Severe Acute Respiratory Syndrome Coronaviruses by Antibodies Targeting the Receptor-Binding Domain of Spike Protein. Journal of Immunology, 2006, 176, 6085-6092.	0.4	108
14	Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Research, 2020, 179, 104820.	1.9	106
15	Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology, 2005, 334, 74-82.	1.1	103
16	Identification of Immunodominant Epitopes on the Membrane Protein of the Severe Acute Respiratory Syndrome-Associated Coronavirus. Journal of Clinical Microbiology, 2005, 43, 3718-3726.	1.8	81
17	Identification of a Critical Motif for the Human Immunodeficiency Virus Type 1 (HIV-1) gp41 Core Structure: Implications for Designing Novel Anti-HIV Fusion Inhibitors. Journal of Virology, 2008, 82, 6349-6358.	1.5	81
18	Conserved Residue Lys574 in the Cavity of HIV-1 Gp41 Coiled-coil Domain Is Critical for Six-helix Bundle Stability and Virus Entry. Journal of Biological Chemistry, 2007, 282, 25631-25639.	1.6	75

#	Article	IF	CITATIONS
19	Mapping of Antigenic Sites on the Nucleocapsid Protein of the Severe Acute Respiratory Syndrome Coronavirus. Journal of Clinical Microbiology, 2004, 42, 5309-5314.	1.8	70
20	Long-Term Persistence of Robust Antibody and Cytotoxic T Cell Responses in Recovered Patients Infected with SARS Coronavirus. PLoS ONE, 2006, 1, e24.	1.1	69
21	Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virology Journal, 2010, 7, 299.	1.4	69
22	Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition. Journal of Virology, 2017, 91, .	1.5	65
23	Conserved Salt Bridge between the N- and C-Terminal Heptad Repeat Regions of the Human Immunodeficiency Virus Type 1 gp41 Core Structure Is Critical for Virus Entry and Inhibition. Journal of Virology, 2008, 82, 11129-11139.	1.5	60
24	Broad Antiviral Activity and Crystal Structure of HIV-1 Fusion Inhibitor Sifuvirtide. Journal of Biological Chemistry, 2012, 287, 6788-6796.	1.6	60
25	Biophysical Property and Broad Anti-HIV Activity of Albuvirtide, a 3-Maleimimidopropionic Acid-Modified Peptide Fusion Inhibitor. PLoS ONE, 2012, 7, e32599.	1.1	57
26	Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Science Advances, 2020, 6, .	4.7	57
27	Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: Revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine, 2006, 24, 5498-5508.	1.7	55
28	Shortâ€peptide fusion inhibitors with high potency against wildâ€type and enfuvirtideâ€resistant HIVâ€1. FASEB Journal, 2013, 27, 1203-1213.	0.2	54
29	Development of potent and long-acting HIV-1 fusion inhibitors. Aids, 2016, 30, 1187-1196.	1.0	53
30	A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Antiviral Activity. Journal of Virology, 2017, 91, .	1.5	53
31	Synthesized Peptide Inhibitors of HIV-1 gp41-dependent Membrane Fusion. Current Pharmaceutical Design, 2013, 19, 1800-1809.	0.9	51
32	In Vitro Selection and Characterization of HIV-1 Variants with Increased Resistance to Sifuvirtide, a Novel HIV-1 Fusion Inhibitor. Journal of Biological Chemistry, 2011, 286, 3277-3287.	1.6	47
33	The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors. Journal of Biological Chemistry, 2012, 287, 34558-34568.	1.6	47
34	Design of a highly potent HIV-1 fusion inhibitor targeting the gp41 pocket. Aids, 2015, 29, 13-21.	1.0	44
35	Discovery of Critical Residues for Viral Entry and Inhibition through Structural Insight of HIV-1 Fusion Inhibitor CP621–652. Journal of Biological Chemistry, 2012, 287, 20281-20289.	1.6	42
36	Structural and functional characterization of HIV-1 cell fusion inhibitor T20. Aids, 2019, 33, 1-11.	1.0	38

YUXIAN HE

#	Article	IF	CITATIONS
37	Vaccine Design for Severe Acute Respiratory Syndrome Coronavirus. Viral Immunology, 2005, 18, 327-332.	0.6	36
38	Longitudinal profiles of immunoglobulin G antibodies against severe acute respiratory syndrome coronavirus components and neutralizing activities in recovered patients. Scandinavian Journal of Infectious Diseases, 2011, 43, 515-521.	1.5	36
39	A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2017, 91, .	1.5	35
40	The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance. Journal of Antimicrobial Chemotherapy, 2014, 69, 2759-2769.	1.3	34
41	Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity. Journal of Virology, 2019, 93, .	1.5	34
42	Mechanism of HIV-1 Resistance to Short-Peptide Fusion Inhibitors Targeting the Gp41 Pocket. Journal of Virology, 2015, 89, 5801-5811.	1.5	30
43	Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2018, 92, .	1.5	30
44	Monotherapy with a low-dose lipopeptide HIV fusion inhibitor maintains long-term viral suppression in rhesus macaques. PLoS Pathogens, 2019, 15, e1007552.	2.1	30
45	Design of Novel HIV-1/2 Fusion Inhibitors with High Therapeutic Efficacy in Rhesus Monkey Models. Journal of Virology, 2018, 92, .	1.5	29
46	Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. Journal of Biological Chemistry, 2018, 293, 5323-5334.	1.6	27
47	Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide. Cell, 2022, 185, 131-144.e18.	13.5	24
48	Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK. Retrovirology, 2014, 11, 40.	0.9	21
49	Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket. Journal of Virology, 2015, 89, 12467-12479.	1.5	21
50	Identification and characterization of a subpocket on the N-trimer of HIV-1 Gp41. Aids, 2015, 29, 1015-1024.	1.0	20
51	Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial–approved membrane fusion inhibitor. Journal of Biological Chemistry, 2018, 293, 12703-12718.	1.6	20
52	SARS-CoV-2-derived fusion inhibitor lipopeptides exhibit highly potent and broad-spectrum activity against divergent human coronaviruses. Signal Transduction and Targeted Therapy, 2021, 6, 294.	7.1	20
53	Structural Basis of Potent and Broad HIV-1 Fusion Inhibitor CP32M. Journal of Biological Chemistry, 2012, 287, 26618-26629.	1.6	18
54	Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants. Emerging Microbes and Infections, 2021, 10, 1227-1240.	3.0	17

#	Article	IF	CITATIONS
55	A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2019, 93, .	1.5	15
56	Pan-coronavirus fusion inhibitors possess potent inhibitory activity against HIV-1, HIV-2, and simian immunodeficiency virus. Emerging Microbes and Infections, 2021, 10, 810-821.	3.0	15
57	Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket. Frontiers in Cellular and Infection Microbiology, 2018, 8, 51.	1.8	14
58	Mechanism of HIV-1 Resistance to an Electronically Constrained α-Helical Peptide Membrane Fusion Inhibitor. Journal of Virology, 2018, 92, .	1.5	12
59	Screening HLA-A-restricted T cell epitopes of SARS-CoV-2 and the induction of CD8+ T cell responses in HLA-A transgenic mice. Cellular and Molecular Immunology, 2021, 18, 2588-2608.	4.8	12
60	The N-Terminal T–T Motif of a Third-Generation HIV-1 Fusion Inhibitor Is Not Required for Binding Affinity and Antiviral Activity. Journal of Medicinal Chemistry, 2015, 58, 6378-6388.	2.9	11
61	SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern including Omicron. Emerging Microbes and Infections, 2022, 11, 1819-1827.	3.0	10
62	Preparation and evaluation of amphipathic lipopeptideâ€loaded PLGA microspheres as sustainedâ€release system for AIDS prevention. Engineering in Life Sciences, 2020, 20, 476-484.	2.0	9
63	Generation of HIV-resistant cells with a single-domain antibody: implications for HIV-1 gene therapy. Cellular and Molecular Immunology, 2021, 18, 660-674.	4.8	9
64	The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors. Journal of Virology, 2019, 94, .	1.5	7
65	Identification of a novel HIV-1-neutralizing antibody from a CRF07_BC-infected Chinese donor. Oncotarget, 2017, 8, 63047-63063.	0.8	6
66	Isolation and characterization of a novel neutralizing antibody targeting the CD4-binding site of HIV-1 gp120. Antiviral Research, 2016, 132, 252-261.	1.9	5
67	Cell membrane-anchored anti-HIV single-chain antibodies and bifunctional inhibitors targeting the gp41 fusion protein: new strategies for HIV gene therapy. Emerging Microbes and Infections, 2022, 11, 30-49.	3.0	5
68	DNA Triplex-Based Complexes Display Anti-HIV-1-Cell Fusion Activity. Nucleic Acid Therapeutics, 2015, 25, 219-225.	2.0	4
69	Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses, 2019, 11, 609.	1.5	4
70	Design of a Bispecific HIV Entry Inhibitor Targeting the Cell Receptor CD4 and Viral Fusion Protein Gp41. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	4
71	Therapeutic Efficacy and Resistance Selection of a Lipopeptide Fusion Inhibitor in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	3
72	Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro. BMC Infectious Diseases, 2020, 20, 569.	1.3	2

#	Article	IF	CITATIONS
73	Structural and Functional Characterization of the Secondary Mutation N126K Selected by Various HIV-1 Fusion Inhibitors. Viruses, 2020, 12, 326.	1.5	2
74	Safety Assessment of Microbicide 2P23 on the Rectal and Vaginal Microbiota and Its Antiviral Activity on HIV Infection. Frontiers in Immunology, 2021, 12, 702172.	2.2	2
75	In Vitro Selection and Characterization of HIV-1 Variants with Increased Resistance to LP-40, Enfuvirtide-Based Lipopeptide Inhibitor. International Journal of Molecular Sciences, 2022, 23, 6638.	1.8	Ο
76	Protocol for evaluating CD8+ TÂcell-mediated immunity in latently SHIV-infected rhesus macaques with HIV fusion-inhibitory lipopeptide monotherapy. STAR Protocols, 2022, 3, 101479.	0.5	0