List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8161642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twenty-Four–Hour Central (Aortic) Systolic Blood Pressure: Reference Values and Dipping Patterns in Untreated Individuals. Hypertension, 2022, 79, 251-260.	1.3	13
2	Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H493-H522.	1.5	35
3	Ambulatory measurement of pulsatile hemodynamics. , 2022, , 125-135.		Ο
4	Twenty-Four-Hour Pulsatile Hemodynamics Predict Brachial Blood Pressure Response to Renal Denervation in the SPYRAL HTN-OFF MED Trial. Hypertension, 2022, 79, 1506-1514.	1.3	10
5	Aortic Pulse Wave Velocity Predicts Cardiovascular Events and Mortality in Patients Undergoing Coronary Angiography. Hypertension, 2021, 77, 571-581.	1.3	49
6	POS-296 CARDIOVASCULAR RISK PREDICTION WITH AORTIC PULSE WAVE VELOCITY: A CARTAGENE STUDY. Kidney International Reports, 2021, 6, S127.	0.4	0
7	Limited Effect of 60-Days Strict Head Down Tilt Bed Rest on Vascular Aging. Frontiers in Physiology, 2021, 12, 685473.	1.3	14
8	Covid-19 Effects on ARTErial StIffness and Vascular AgeiNg: CARTESIAN Study Rationale and Protocol. Artery Research, 2021, 27, 59.	0.3	19
9	OUP accepted manuscript. American Journal of Hypertension, 2021, , .	1.0	2
10	Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. European Heart Journal Digital Health, 2021, 2, 676-690.	0.7	10
11	A comparison between left ventricular ejection time measurement methods during physiological changes induced by simulated microgravity. Experimental Physiology, 2021, , .	0.9	2
12	Determinants of Increased Central Excess Pressure in Dialysis: Role of Dialysis Modality and Arteriovenous Fistula. American Journal of Hypertension, 2020, 33, 137-145.	1.0	2
13	High prevalence of hypertension and early vascular aging: a screening program in pharmacies in Upper Austria. Journal of Human Hypertension, 2020, 34, 326-334.	1.0	12
14	Measuring Arterial Stiffness in a Head-Down Tilt Bed Rest Study: A Multisensor Approach. , 2020, 2020, 2715-2718.		3
15	Simulating re-reflections of arterial pressure waves at the aortic valve using difference equations. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1243-1252.	1.0	5
16	Vascular Age Is Not Only Atherosclerosis, it Is Also Arteriosclerosis. Journal of the American College of Cardiology, 2020, 76, 229-230.	1.2	16
17	Addressing the Unmet Needs of Measuring Vascular Ageing in Clinical Practice—European COoperation in Science and Technology Action VascAgeNet. Artery Research, 2020, 26, 71-75. 	0.3	23
18	The European COST Action VascAgeNet Fostering Innovation — When Industry Comes to Science. Artery Research, 2020, 26, 125-129.	0.3	9

#	Article	IF	CITATIONS
19	Validation of a Method to Estimate Stroke Volume from Brachial-cuff Derived Pressure Waveforms. Artery Research, 2020, 26, 42-47.	0.3	2
20	Identification of Distinct Arterial Waveform Clusters and a Longitudinal Evaluation of Their Clinical Usefulness. Hypertension, 2019, 74, 921-928.	1.3	7
21	Prognostic Value of Carotid and Radial Artery Reservoirâ€Wave Parameters in End‣tage Renal Disease. Journal of the American Heart Association, 2019, 8, e012314.	1.6	11
22	Unveiling the Vascular Mechanisms Behind Longâ€Term Effects of Coarctation Treatment Using Pulse Wave Dynamics. Journal of the American Heart Association, 2019, 8, e012278.	1.6	5
23	Measuring the Interaction Between the Macro- and Micro-Vasculature. Frontiers in Cardiovascular Medicine, 2019, 6, 169.	1.1	31
24	Cross-sectional analysis of pulsatile hemodynamics across the adult life span. Journal of Hypertension, 2019, 37, 2404-2413.	0.3	13
25	Aortic systolic pressure derived with different calibration methods. Blood Pressure Monitoring, 2018, 23, 134-140.	0.4	22
26	Pulsatile Hemodynamics Are Associated With Exercise Capacity in Patients With Exertional Dyspnea and Preserved Left Ventricular Ejection Fraction. American Journal of Hypertension, 2018, 31, 574-581.	1.0	1
27	Method Comparison and Validation of the Determination of Ejection Duration from Oscillometric Measurements. IFAC-PapersOnLine, 2018, 51, 343-348.	0.5	3
28	Modeling Arterial Wave Reflection with Difference Equations. SNE Simulation Notes Europe, 2018, 28, 157-164.	0.2	1
29	Systolic blood pressure amplification and waveform calibration. Hypertension Research, 2017, 40, 518-518.	1.5	7
30	Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors. Journal of Human Hypertension, 2017, 31, 305-312.	1.0	8
31	Aortic Waveform Analysis to Individualize Treatment in Heart Failure. Circulation: Heart Failure, 2017, 10, .	1.6	23
32	Towards a consensus on the understanding and analysis of the pulse waveform: Results from the 2016 Workshop on Arterial Hemodynamics: Past, present and future. Artery Research, 2017, 18, 75.	0.3	44
33	Effect of Monthly, Highâ€Dose, Longâ€Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy. Journal of the American Heart Association, 2017, 6, .	1.6	63
34	Computational assessment of model-based wave separation using a database of virtual subjects. Journal of Biomechanics, 2017, 64, 26-31.	0.9	5
35	Relationship Between 24-Hour Ambulatory Central Systolic Blood Pressure and Left Ventricular Mass. Hypertension, 2017, 70, 1157-1164.	1.3	52
36	Pulse Waveform Analysis: Is It Ready for Prime Time?. Current Hypertension Reports, 2017, 19, 73.	1.5	26

#	Article	IF	CITATIONS
37	P122 CALCULATING RESERVOIR PRESSURE WITH OR WITHOUT FLOW INFORMATION: SIMILARITY AND ALGORITHMIC SENSITIVITY AT RADIAL ARTERY. Artery Research, 2017, 20, 78.	0.3	0
38	Wave intensity of aortic root pressure as diagnostic marker of left ventricular systolic dysfunction. PLoS ONE, 2017, 12, e0179938.	1.1	19
39	Mathematical Wave Fitting Models for the Quantification of the Diurnal Profile and Variability of Pulse Wave Analysis Parameters. SNE Simulation Notes Europe, 2017, 27, 153-160.	0.2	2
40	Different associations between beta-blockers and other antihypertensive medication combinations with brachial blood pressure and aortic waveform parameters. International Journal of Cardiology, 2016, 219, 257-263.	0.8	10
41	Ambulatory (24Âh) blood pressure and arterial stiffness measurement in Marfan syndrome patients: a case control feasibility and pilot study. BMC Cardiovascular Disorders, 2016, 16, 81.	0.7	4
42	Nitrites/Nitrates in HeartÂFailure With Preserved Ejection Fraction. Journal of the American College of Cardiology, 2016, 67, 1382-1383.	1.2	0
43	Influence of an Asymptotic Pressure Level on the Windkessel Models of the Arterial System. IFAC-PapersOnLine, 2015, 48, 17-22.	0.5	10
44	7C.04. Journal of Hypertension, 2015, 33, e97.	0.3	2
45	Increased nocturnal heart rate and wave reflection are early markers of cardiovascular disease in Williams–Beuren syndrome children. Journal of Hypertension, 2015, 33, 804-809.	0.3	12
46	Noninvasive methods to assess pulse wave velocity. Journal of Hypertension, 2015, 33, 1023-1031.	0.3	91
47	Feasibility of oscillometric aortic pressure and stiffness assessment using the VaSera VS-1500. Blood Pressure Monitoring, 2015, 20, 273-279.	0.4	8
48	Assessment of Model Based (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in the Asklepios Cohort. PLoS ONE, 2015, 10, e0141656.	1.1	22
49	Non-invasive wave reflection quantification in patients with reduced ejection fraction. Physiological Measurement, 2015, 36, 179-190.	1.2	23
50	Pulse wave intensity and ECG: A multisensor approach for the risk assessment in systolic heart failure. , 2015, , .		0
51	Determinants and covariates of central pressures and wave reflections in systolic heart failure. International Journal of Cardiology, 2015, 190, 308-314.	0.8	18
52	Pressure-independent relationship of aortic characteristic impedance with left ventricular mass and geometry in untreated hypertension. Journal of Hypertension, 2015, 33, 153-160.	0.3	16
53	Reservoir Wave Paradigm: An Implementation and Sensitivity Analysis. SNE Simulation Notes Europe, 2015, 25, .	0.2	0
54	What time is the right time, and how to measure?. Journal of Human Hypertension, 2014, 28, 73-73.	1.0	0

#	Article	IF	CITATIONS
55	Performance of pulse wave velocity measured using a brachial cuff in a community setting. Blood Pressure Monitoring, 2014, 19, 315-319.	0.4	29
56	Reservoir and excess pressures predict cardiovascular events in high-risk patients. International Journal of Cardiology, 2014, 171, 31-36.	0.8	72
57	P10.6 ARTERIAL WAVEFORM MEASURES IN THE VITAMIN D ASSESSMENT (VIDA) STUDY: RELATIONSHIPS WITH LIFESTYLE AND CARDIOVASCULAR FACTORS. Artery Research, 2014, 8, 158.	0.3	1
58	P11.7 THE DECAY OF AORTIC BLOOD PRESSURE DURING DIASTOLE: INFLUENCE OF AN ASYMPTOTIC PRESSURE LEVEL ON THE EXPONENTIAL FIT. Artery Research, 2014, 8, 162.	0.3	2
59	P2.15 IDENTIFICATION OF FRAMEWORK CONDITIONS IN CUFF BASED BLOOD MEASUREMENT SYSTEMS. Artery Research, 2014, 8, 136.	0.3	0
60	Reference Values for Central Blood Pressure. Journal of the American College of Cardiology, 2014, 63, 2299.	1.2	5
61	Simulation of Fluid Dynamics in a Network of Blood Vessels with 1D FEM. SNE Simulation Notes Europe, 2014, 24, .	0.2	0
62	Pulsatile Hemodynamics in Patients With Exertional Dyspnea. Journal of the American College of Cardiology, 2013, 61, 1874-1883.	1.2	104
63	Wave reflection quantification based on pressure waveforms alone—Methods, comparison, and clinical covariates. Computer Methods and Programs in Biomedicine, 2013, 109, 250-259.	2.6	97
64	Increasing Stability of Real-Time Pulse Wave Velocity Estimation by Combining Established and New Approaches. , 2013, , .		4
65	Oscillometric estimation of aortic pulse wave velocity. Blood Pressure Monitoring, 2013, 18, 173-176.	0.4	235
66	Calculation of arterial characteristic impedance: a comparison using different blood flow models. Mathematical and Computer Modelling of Dynamical Systems, 2013, 19, 319-330.	1.4	21
67	Aortic stiffness, measured invasively, or estimated from radial waveforms, predicts severe cardiovascular events. European Heart Journal, 2013, 34, 2892-2892.	1.0	3
68	Online and Offline Determination of QT and PR Interval and QRS Duration in Electrocardiography. Lecture Notes in Computer Science, 2013, , 1-15.	1.0	13
69	Wave Reflections, Assessed With a Novel Method for Pulse Wave Separation, Are Associated With End-Organ Damage and Clinical Outcomes. Hypertension, 2012, 60, 534-541.	1.3	175
70	Effects of Different Blood Flow Models on the Determination of Arterial Characteristic Impedance. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 918-923.	0.4	2
71	1.5 BLOOD PRESSURE-INDEPENDENT ASSOCIATION BETWEEN AORTIC CHARACTERISTIC IMPEDANCE AND LEFT VENTRICULAR MASS IN HYPERTENSION. Artery Research, 2012, 6, 142.	0.3	1
72	4.2 WINDKESSEL-MODEL DERIVED RESERVOIR AND EXCESS PRESSURES PREDICT CARDIOVASCULAR EVENTS IN HIGH-RISK PATIENTS. Artery Research, 2012, 6, 147.	0.3	2

#	Article	IF	CITATIONS
73	Assessment of central haemomodynamics from a brachial cuff in a community setting. BMC Cardiovascular Disorders, 2012, 12, 48.	0.7	46
74	Automatic Detection of QRS Complex, P-Wave and T-Wave in the Electrocardiogram. SNE Simulation Notes Europe, 2012, 22, 39-44.	0.2	0
75	Invasive Validation of the N-Point Moving Average Method. Journal of the American College of Cardiology, 2011, 58, 1731.	1.2	0
76	P4.12 MODEL BASED ESTIMATION OF AORTIC PULSE WAVE VELOCITY. Artery Research, 2011, 5, 162.	0.3	1
77	P7.01 AORTIC PULSE WAVE VELOCITY, ESTIMATED WITH A SIMPLIFIED METHOD BASED ON RADIAL WAVEFORMS AND BODY HEIGHT, PREDICTS CARDIOVASCULAR EVENTS. Artery Research, 2011, 5, 178.	0.3	2
78	P7.16 ASSESSMENT OF CENTRAL HAEMODYNAMICS AND ARTERIAL STIFFNESS IN THE COMMUNITY – ARE WE THERE YET?. Artery Research, 2011, 5, 182.	0.3	0
79	5.3 DISTANCE MEASUREMENT FOR PULSE WAVE VELOCITY CALCULATION – COMPARISON WITH INVASIVE FINDINGS. Artery Research, 2011, 5, 142.	0.3	0
80	Travel distance estimation for carotid femoral pulse wave velocity. Journal of Hypertension, 2011, 29, 2491.	0.3	5
81	Validation of a Brachial Cuff-Based Method for Estimating Central Systolic Blood Pressure. Hypertension, 2011, 58, 825-832.	1.3	380
82	ARTERIAL WAVE REFLECTION AND ARTERIAL STIFFNESS INDEPENDENTLY PREDICT CARDIOVASCULAR EVENTS: PP.38.494. Journal of Hypertension, 2010, 28, e597.	0.3	1
83	P1.01 VALIDATION OF A BRACHIAL CUFF-BASED METHOD FOR ASSESSING CENTRAL BLOOD PRESSURE. Artery Research, 2010, 4, 153.	0.3	0
84	1.5 NOVEL NON-INVASIVE METHOD TO ASSESS WAVE REFLECTION FROM THE PRESSURE WAVEFORM ALONE. Artery Research, 2010, 4, 145.	0.3	2
85	A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. Journal of Human Hypertension, 2010, 24, 498-504.	1.0	313
86	P1.04 INVASIVE ASSESSMENT OF AORTIC PRESSURE WAVES: COMPARISON BETWEEN PRESSURE WIRE AND FLUID FILLED CATHETER. Artery Research, 2009, 3, 161.	0.3	1