
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8161004/publications.pdf Version: 2024-02-01

CHIH-JEN SUNC

#	Article	IF	CITATIONS
1	An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 2013, 160, 995-1011.	2.8	589
2	Structure, aerodynamics, and geometry of premixed flamelets. Progress in Energy and Combustion Science, 2000, 26, 459-505.	15.8	521
3	A jet fuel surrogate formulated by real fuel properties. Combustion and Flame, 2010, 157, 2333-2339.	2.8	484
4	The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combustion and Flame, 2012, 159, 1444-1466.	2.8	355
5	A comprehensive experimental and modeling study of isobutene oxidation. Combustion and Flame, 2016, 167, 353-379.	2.8	282
6	Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combustion and Flame, 2010, 157, 1760-1770.	2.8	281
7	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	2.8	270
8	Using rapid compression machines for chemical kinetics studies. Progress in Energy and Combustion Science, 2014, 44, 1-18.	15.8	236
9	A RAPID COMPRESSION MACHINE FOR CHEMICAL KINETICS STUDIES AT ELEVATED PRESSURES AND TEMPERATURES. Combustion Science and Technology, 2007, 179, 497-530.	1.2	193
10	Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame, 2007, 151, 209-224.	2.8	183
11	Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Progress in Energy and Combustion Science, 2017, 63, 1-78.	15.8	180
12	Heat Transfer of Aviation Kerosene at Supercritical Conditions. Journal of Thermophysics and Heat Transfer, 2009, 23, 543-550.	0.9	177
13	Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 2016, 54, 120-138.	8.2	175
14	Compositional effects on the ignition of FACE gasolines. Combustion and Flame, 2016, 169, 171-193.	2.8	174
15	Experimental studies on the combustion characteristics of alternative jet fuels. Fuel, 2012, 98, 176-182.	3.4	172
16	Aerodynamics inside a rapid compression machine. Combustion and Flame, 2006, 145, 160-180.	2.8	171
17	Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures. Journal of Propulsion and Power, 2007, 23, 428-436.	1.3	168
18	A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combustion and Flame, 2017, 178, 111-134.	2.8	164

#	Article	IF	CITATIONS
19	An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33, 3367-3374.	2.4	152
20	Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combustion and Flame, 2011, 158, 809-819.	2.8	149
21	Augmented reduced mechanisms for NO emission in methane oxidation. Combustion and Flame, 2001, 125, 906-919.	2.8	144
22	Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling. Fuel Processing Technology, 2008, 89, 1244-1254.	3.7	143
23	Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. Proceedings of the Combustion Institute, 2015, 35, 249-257.	2.4	138
24	Laminar flame speeds of moist syngas mixtures. Combustion and Flame, 2011, 158, 345-353.	2.8	131
25	Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures. Fuel, 2013, 109, 191-200.	3.4	130
26	Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combustion and Flame, 2012, 159, 3066-3078.	2.8	128
27	Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 2006, 38, 516-529.	1.0	124
28	Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor. Journal of Propulsion and Power, 2006, 22, 103-110.	1.3	102
29	Autoignition of toluene and benzene at elevated pressures in a rapid compression machine. Combustion and Flame, 2007, 150, 355-368.	2.8	101
30	Catalyzed combustion of hydrogen–oxygen in platinum tubes for micro-propulsion applications. Proceedings of the Combustion Institute, 2005, 30, 2481-2488.	2.4	95
31	A comprehensive experimental and modeling study of iso-pentanol combustion. Combustion and Flame, 2013, 160, 2712-2728.	2.8	95
32	Reaction Kinetics of CO + HO2→ Products: Ab Initio Transition State Theory Study with Master Equation Modelingâ€. Journal of Physical Chemistry A, 2007, 111, 4031-4042.	1.1	92
33	An experimental investigation of ethylene/O2/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures. Combustion and Flame, 2008, 153, 343-354.	2.8	92
34	Autoignition of gasoline and its surrogates in a rapid compression machine. Proceedings of the Combustion Institute, 2013, 34, 345-352.	2.4	92
35	Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combustion and Flame, 2014, 161, 1972-1983.	2.8	92
36	Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel, 2011, 90, 1004-1011.	3.4	90

#	Article	IF	CITATIONS
37	Ignition of CO/H2/N2 versus heated air in counterflow: experimental and modeling results. Combustion and Flame, 2000, 120, 417-426.	2.8	88
38	On the importance of graph search algorithms for DRGEP-based mechanism reduction methods. Combustion and Flame, 2011, 158, 1439-1443.	2.8	88
39	Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames. Combustion Science and Technology, 1994, 99, 119-132.	1.2	86
40	A detailed combined experimental and theoretical study on dimethyl ether/propane blended oxidation. Combustion and Flame, 2016, 168, 310-330.	2.8	85
41	An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8. Combustion and Flame, 2010, 157, 676-685.	2.8	80
42	Comparative Autoignition Trends in Butanol Isomers at Elevated Pressure. Energy & Fuels, 2013, 27, 1688-1698.	2.5	80
43	Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions. Combustion and Flame, 2009, 156, 1278-1288.	2.8	75
44	On the uncertainty of temperature estimation in a rapid compression machine. Combustion and Flame, 2015, 162, 2518-2528.	2.8	75
45	Recent progress and challenges in exploiting graphics processors in computational fluid dynamics. Journal of Supercomputing, 2014, 67, 528-564.	2.4	74
46	Soot formation in non-premixed counterflow flames of butane and butanol isomers. Combustion and Flame, 2016, 164, 167-182.	2.8	70
47	Catalytic Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions. Journal of Propulsion and Power, 2009, 25, 1226-1232.	1.3	69
48	Ignition delay study of moist hydrogen/oxidizer mixtures using a rapid compression machine. International Journal of Hydrogen Energy, 2012, 37, 6901-6911.	3.8	67
49	Effect of ferrocene addition on sooting limits in laminar premixed ethylene–oxygen–argon flames. Combustion and Flame, 2004, 139, 288-299.	2.8	63
50	Autoignition of gasoline surrogates at low temperature combustion conditions. Combustion and Flame, 2015, 162, 2272-2285.	2.8	63
51	Fundamental Combustion Properties of H ₂ /CO Mixtures: Ignition and Flame Propagation at Elevated Pressures. Combustion Science and Technology, 2008, 180, 1097-1116.	1.2	62
52	A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures. Fuel, 2010, 89, 2853-2863.	3.4	62
53	CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach. Combustion and Flame, 2010, 157, 1316-1324.	2.8	62
54	Combustion and Ignition of Thermally Cracked Kerosene in Supersonic Model Combustors. Journal of Propulsion and Power, 2007, 23, 317-324.	1.3	60

#	Article	IF	CITATIONS
55	Autoignition of methylcyclohexane at elevated pressures. Combustion and Flame, 2009, 156, 1852-1855.	2.8	60
56	Steady and pulsating propagation and extinction of rich hydrogen/air flames at elevated pressures. Combustion and Flame, 2001, 124, 35-49.	2.8	59
57	Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels. Combustion and Flame, 2014, 161, 2752-2764.	2.8	59
58	A mechanistic study of Soret diffusion in hydrogen–air flames. Combustion and Flame, 2010, 157, 192-200.	2.8	57
59	Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons. Fuel, 2012, 97, 695-702.	3.4	56
60	Flame macrostructures and thermoacoustic instabilities in stratified swirling flames. Proceedings of the Combustion Institute, 2019, 37, 5377-5384.	2.4	56
61	Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs. Journal of Computational Physics, 2014, 256, 854-871.	1.9	55
62	pyJac: Analytical Jacobian generator for chemical kinetics. Computer Physics Communications, 2017, 215, 188-203.	3.0	55
63	Detailed oxidation kinetics and flame inhibition effects of chloromethane. Combustion and Flame, 1996, 105, 291-307.	2.8	54
64	Experimental and numerical investigation of premixed tubular flames. Proceedings of the Combustion Institute, 2002, 29, 1479-1486.	2.4	54
65	Autoignition of methanol: Experiments and computations. International Journal of Chemical Kinetics, 2011, 43, 175-184.	1.0	53
66	Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine. Combustion and Flame, 2008, 155, 417-428.	2.8	49
67	PAH formation in counterflow non-premixed flames of butane and butanol isomers. Combustion and Flame, 2016, 170, 91-110.	2.8	48
68	Flame interactions in a stratified swirl burner: Flame stabilization, combustion instabilities and beating oscillations. Combustion and Flame, 2020, 212, 500-509.	2.8	48
69	Development of Isopentanol Reaction Mechanism Reproducing Autoignition Character at High and Low Temperatures. Energy & Fuels, 2012, 26, 4871-4886.	2.5	46
70	Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel, 2017, 210, 343-351.	3.4	46
71	Multi-Property Measurements at High Sampling Rates Using Rayleigh Scattering. AIAA Journal, 2009, 47, 850-862.	1.5	45
72	Flame Propagation and Extinction Characteristics of Neat Surrogate Fuel Components. Energy & Fuels, 2010, 24, 3840-3849.	2.5	44

#	Article	IF	CITATIONS
73	The distillation curve and sooting propensity of a typical jet fuel. Fuel, 2019, 235, 350-362.	3.4	44
74	Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions. Journal of Thermophysics and Heat Transfer, 2011, 25, 450-456.	0.9	42
75	Two-line thermometry and H2O measurement for reactive mixtures in rapid compression machine near 7.61¼m. Combustion and Flame, 2012, 159, 3493-3501.	2.8	42
76	Microgravity burner-generated spherical diffusion flames: experiment and computation‡‡Currently at Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 Combustion and Flame, 2001, 125, 1265-1278.	2.8	39
77	Vortex formation in a rapid compression machine: Influence of physical and operating parameters. Fuel, 2012, 94, 409-417.	3.4	37
78	Temperature measurements in a rapid compression machine using mid-infrared H ₂ O absorption spectroscopy near 76Âl¼m. Applied Optics, 2012, 51, 5464.	0.9	36
79	Effects of hydrogen addition on combustion characteristics of n-decane/air mixtures. Combustion and Flame, 2014, 161, 2252-2262.	2.8	36
80	Optimization of Jet-A fuel reforming for aerospace applications. International Journal of Hydrogen Energy, 2006, 31, 1066-1078.	3.8	31
81	Homogeneous charge compression ignition of binary fuel blends. Combustion and Flame, 2008, 155, 431-439.	2.8	31
82	Reduced Chemistry for a Gasoline Surrogate Valid at Engine-Relevant Conditions. Energy & Fuels, 2015, 29, 1172-1185.	2.5	31
83	A surrogate mixture and kinetic mechanism for emulating the evaporation and autoignition characteristics of gasoline fuel. Combustion and Flame, 2015, 162, 3773-3784.	2.8	31
84	Effect of nitric oxide and exhaust gases on gasoline surrogate autoignition: iso-octane experiments and modeling. Combustion and Flame, 2022, 236, 111807.	2.8	29
85	Catalytic Combustion of Rich Methane/Oxygen Mixtures for Micropropulsion Applications. Journal of Propulsion and Power, 2006, 22, 684-693.	1.3	27
86	Soot formation in counterflow non-premixed ethylene flames at elevated pressures. Combustion and Flame, 2018, 195, 253-266.	2.8	26
87	Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor. Experimental Thermal and Fluid Science, 2019, 109, 109857.	1.5	26
88	Fuel molecular structure effect on autoignition of highly branched iso-alkanes at low-to-intermediate temperatures: Iso-octane versus iso-dodecane. Combustion and Flame, 2020, 214, 152-166.	2.8	26
89	Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry. Applied Optics, 2005, 44, 3565.	2.1	25
90	Effects of hydrogen peroxide addition on combustion characteristics of n-decane/air mixtures. Fuel, 2018, 223, 324-333.	3.4	25

#	Article	IF	CITATIONS
91	Experimental low-stretch gaseous diffusion flames in buoyancy-induced flowfields. Proceedings of the Combustion Institute, 2005, 30, 527-535.	2.4	24
92	The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	24
93	Autoignition of methyl butanoate under engine relevant conditions. Combustion and Flame, 2016, 171, 1-14.	2.8	23
94	Autoignition of trans-decalin, a diesel surrogate compound: Rapid compression machine experiments and chemical kinetic modeling. Combustion and Flame, 2018, 194, 152-163.	2.8	23
95	The blending effect on the sooting tendencies of alternative/conventional jet fuel blends in non-premixed flames. Fuel, 2019, 237, 648-657.	3.4	23
96	Autoignition study of ULSD#2 and FD9A diesel blends. Combustion and Flame, 2016, 166, 45-54.	2.8	22
97	Autoignition response of n-butanol and its blends with primary reference fuel constituents of gasoline. Combustion and Flame, 2015, 162, 2466-2479.	2.8	20
98	lgnition propensity of hydrogen/air mixtures impinging on a platinum stagnation surface. International Journal of Hydrogen Energy, 2010, 35, 11412-11423.	3.8	19
99	An automated target species selection method for dynamic adaptive chemistry simulations. Combustion and Flame, 2015, 162, 1358-1374.	2.8	19
100	A mechanistic evaluation of Soret diffusion in heptane/air flames. Combustion and Flame, 2012, 159, 2345-2351.	2.8	18
101	The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement. Energy, 2020, 195, 116956.	4.5	18
102	A semi-global reaction rate model based on experimental data for the self-hydrolysis kinetics of aqueous sodium borohydride. International Journal of Hydrogen Energy, 2013, 38, 4024-4033.	3.8	17
103	Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes. Energy, 2021, 236, 121512.	4.5	17
104	EFFECTS OF ENTRY CONDITIONS ON CRACKED KEROSENE-FUELED SUPERSONIC COMBUSTOR PERFORMANCE. Combustion Science and Technology, 2007, 179, 2199-2217.	1.2	16
105	Experiments and modeling of the autoignition of methyl pentanoate at low to intermediate temperatures and elevated pressures in a rapid compression machine. Fuel, 2018, 212, 479-486.	3.4	16
106	An experimental and modeling study of dimethyl ether/methanol blends autoignition at low temperature. Combustion and Flame, 2018, 198, 89-99.	2.8	16
107	Multi-bifurcation behaviors of stability regimes in a centrally staged swirl burner. Physics of Fluids, 2021, 33, .	1.6	16
108	An investigation of GPU-based stiff chemical kinetics integration methods. Combustion and Flame, 2017, 179, 312-324.	2.8	15

#	Article	IF	CITATIONS
109	Autoignition Study of 1-Methylnaphthalene in a Rapid Compression Machine. Energy & Fuels, 2017, 31, 854-866.	2.5	15
110	Counterflow ignition of n-butanol at atmospheric and elevated pressures. Combustion and Flame, 2015, 162, 3596-3611.	2.8	14
111	Characterizing particulate matter emissions in an aviation kerosene-fueled model combustor at elevated pressures and temperatures. Fuel, 2019, 241, 227-233.	3.4	14
112	Heat Transfer of Aviation Kerosene at Supercritical Conditions. , 2008, , .		13
113	Autoignition of methyl propanoate and its comparisons with methyl ethanoate and methyl butanoate. Combustion and Flame, 2018, 188, 116-128.	2.8	13
114	Burning velocity measurements of microgravity spherical sooting premixed flames using rainbow Schlieren deflectometry. Combustion and Flame, 2005, 140, 93-102.	2.8	12
115	Structure of low-stretch methane nonpremixed flames. Combustion and Flame, 2007, 149, 173-190.	2.8	12
116	Autoignition study of tetralin in a rapid compression machine at elevated pressures and low-to-intermediate temperatures. Fuel, 2015, 159, 436-445.	3.4	12
117	Reduced Chemistry for Butanol Isomers at Engine-Relevant Conditions. Energy & Fuels, 2017, 31, 867-881.	2.5	12
118	Computed Flammability Limits of Opposed-Jet H/O/CO Diffusion Flames at Low Pressure. Journal of Propulsion and Power, 1999, 15, 903-908.	1.3	11
119	Autoignition study of binary blends of n-dodecane/1-methylnaphthalene and iso-cetane/1-methylnaphthalene. Combustion and Flame, 2018, 189, 367-377.	2.8	11
120	Autoignition of CRC diesel surrogates at low temperature combustion conditions: Rapid compression machine experiments and modeling. Combustion and Flame, 2020, 219, 178-197.	2.8	11
121	Experimental investigation of lean-dome high-airflow airblast pilot mixers' operability, emissions, and dynamics. Aerospace Science and Technology, 2020, 100, 105829.	2.5	11
122	Combustion Instabilities With Different Degrees of Premixedness in a Separated Dual-Swirl Burner. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	11
123	Catalyzed Ignition of Using Methane/Hydrogen Fuel in a Microtube for Microthruster Applications. Journal of Propulsion and Power, 2009, 25, 1203-1210.	1.3	10
124	Effect of hydrogen addition on the counterflow ignition of n-butanol at atmospheric and elevated pressures. International Journal of Hydrogen Energy, 2015, 40, 16618-16633.	3.8	10
125	The Impact of Venturi Geometry on Reacting Flows in a Swirl-Venturi Lean Direct Injection Airblast Injector. , 2016, , .		10
126	Effects of hydrogen peroxide addition on two-stage ignition characteristics of n-heptane/air mixtures. International Journal of Hydrogen Energy, 2019, 44, 24312-24320.	3.8	10

#	Article	IF	CITATIONS
127	Parametric study of the slope confinement for passive control in a centrally-staged swirl burner. Energy, 2021, 233, 121188.	4.5	10
128	A comprehensive experimental and modeling study of n-propylcyclohexane oxidation. Combustion and Flame, 2022, 238, 111944.	2.8	10
129	Autoignition of Binary Fuel Blends of n-Butanol and n-Heptane in a Rapid Compression Machine. , 2011, ,		9
130	Experimental Investigation on Ignition Performance of LESS Combustor. , 2011, , .		9
131	Fundamental investigations for lowering emissions and improving operability. Propulsion and Power Research, 2018, 7, 197-204.	2.0	9
132	The impact of swirling flow strength on lean-dome LDI pilot mixers' operability and emissions. Experimental Thermal and Fluid Science, 2019, 109, 109840.	1.5	9
133	Sooting characteristics of hydrocarbon compounds and their blends relevant to aviation fuel applications. Fuel, 2021, 287, 119522.	3.4	9
134	Performance of supersonic model combustors with staged injections of supercritical aviation kerosene. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 661-668.	1.5	8
135	Numerical Simulation of Ignition and Combustion of Ethylene in a Supersonic Model Combustor with a Reduced Kinetic Mechanism. Combustion Science and Technology, 2013, 185, 548-563.	1.2	7
136	Determination of modeled luminosity-based and pressure-based ignition delay times of turbulent spray combustion. International Journal of Heat and Mass Transfer, 2016, 103, 1297-1312.	2.5	7
137	Nonlinear Threshold Sooting Index Prediction Method for Surrogate Formulation Emulating Sooting Characteristics: A Case Study Using RP-3 Jet Fuels. Energy & Fuels, 2020, 34, 9990-9999.	2.5	7
138	UConnRCMPy: Python-based data analysis for Rapid Compression Machines. , 2016, , .		7
139	Dispersion and catalytic ignition of hydrogen leaks within enclosed spaces. International Journal of Hydrogen Energy, 2012, 37, 10405-10415.	3.8	6
140	Development of efficient and accurate skeletal mechanisms for hydrocarbon fuels and kerosene surrogate. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 732-740.	1.5	6
141	Comparative study of the counterflow forced ignition of the butanol isomers at atmospheric and elevated pressures. Combustion and Flame, 2016, 165, 34-49.	2.8	6
142	Acetone photophysics at 282Ânm excitation at elevated pressure and temperature. I: absorption and fluorescence experiments. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	6
143	Using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms. Combustion and Flame, 2018, 198, 186-204.	2.8	6
144	Skeletal Mechanism Generation of Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis. , 2009, , .		5

#	Article	IF	CITATIONS
145	DRGEP-based mechanism reduction strategies: graph search algorithms and skeletal primary reference fuel mechanisms. , 2011, , .		5
146	Injection of Subcritical and Supercritical Aviation Kerosene Into a High-Temperature and High-Pressure Crossflow. , 2011, , .		5
147	The Influence of Intake Pressure and Ethanol Addition to Gasoline on Single- and Dual-Stage Autoignition in an HCCI Engine. Energy & Fuels, 2018, 32, 9822-9837.	2.5	5
148	Sooting Propensities of FACE Gasolines in Counterflow Nonpremixed Flames. Energy & Fuels, 2021, 35, 16101-16114.	2.5	5
149	A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures. Energies, 2021, 14, 7708.	1.6	5
150	ULTRA-DILUTE COMBUSTION OF PRIMARY REFERENCE FUELS. Combustion Science and Technology, 2007, 179, 2361-2379.	1.2	4
151	Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels. , 2009, , .		4
152	Autoignition of Butanol Isomers at Low to Intermediate Temperature and Elevated Pressure. , 2011, , .		4
153	Influence of Blending <i>n</i> -Butanol with Isooctane and <i>n</i> -Heptane on Ignition Delay Times in a Fuel Ignition Tester. Energy & Fuels, 2018, 32, 6239-6251.	2.5	4
154	Ignition and combustion characteristics of decanoic acid derived alkyl esters in a fuel ignition tester. Fuel, 2020, 276, 117982.	3.4	4
155	Autoignition study of iso-cetane/tetralin blends at low temperature. Combustion and Flame, 2021, 228, 415-429.	2.8	4
156	The Effect of the Corner Recirculation Zone on Separated Stratified Swirling Flames and Combustion Instabilities. , 2019, , .		4
157	Catalytic Ignition of Methane/Hydrogen/Oxygen Mixtures for Microthruster Applications. , 2006, , .		3
158	Experimental characterization of premixed spherical ethylene/air flames under sooting conditions. Proceedings of the Combustion Institute, 2007, 31, 1047-1054.	2.4	3
159	Cooling Effectiveness of Impingement/Effusion Cooling With and Without Turbulence Promoter Ribs. , 2012, , .		3
160	Acetone Tracer Laser-Induced Fluorescence (LIF) at 282 nm Excitation as a Diagnostic Tool in Elevated Pressure and Temperature Systems. Applied Spectroscopy, 2019, 73, 395-402.	1.2	3
161	Hypotheses-Driven Combustion Technology and Design Development Approach Pursued Since Early 1970s. , 2020, , 439-484.		3
162	Catalytic Combustion of Methane/Oxygen Mixtures for Micropropulsion Applications. , 2005, , .		2

#	Article	IF	CITATIONS
163	Experimental Study on NOx and CO Emissions of Aviation Kerosene and Coal-to-Liquid Synthetic Aviation Fuel in a Jet Stirred Combustion Reactor. , 2014, , .		2
164	Effect of boundary conditions on downstream vorticity from counter-rotating swirlers. Chinese Journal of Aeronautics, 2015, 28, 34-43.	2.8	2
165	Effect of the Diffuser on the Inlet Acoustic Boundary in Combustion-Acoustic Coupled Oscillation. , 2016, , .		2
166	Combustion Instabilities in a Lean Premixed Pre-Vaporized Combustor at High-Pressure High-Temperature. , 2017, , .		2
167	Acetone photophysics at 282Ânm excitation at elevated pressure and temperature. II: Fluorescence modeling. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	2
168	GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems. , 2014, , 159-182.		2
169	Fundamental Combustion Research Challenged to Meet Designers' Expectations. Green Energy and Technology, 2021, , 251-285.	0.4	2
170	Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions. , 2009, ,		1
171	Skeletal Mechanism Generation of Surrogate Jet Fuels for Aeropropulsion Modeling. , 2010, , .		1
172	Autoignition, Flame Propagation, and Extinction of Binary Fuel Blends of n-Decane/Ethylene and n-Decane/Methane. , 2011, , .		1
173	Experimental Characterization of Fuel-Air Mixing in a Multihole Tube. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	1
174	Evaluation of Combustion Performance of a Coal-Derived Synthetic Jet Fuel. , 2012, , .		1
175	A Numerical Study of the Internal Flow in a Pressure Swirl Atomizer. , 2017, , .		1
176	Advanced Engine Flows and Combustion. Journal of Combustion, 2017, 2017, 1-3.	0.5	1
177	System Validation Experiments for Obtaining Tracer Laser-Induced Fluorescence Data at Elevated Pressure and Temperature. Applied Spectroscopy, 2018, 72, 618-626.	1.2	1
178	On integrated experimentation and simulation of a counter-turning swirling mixer, part I: Experimentation. Aerospace Science and Technology, 2021, 119, 107186.	2.5	1
179	Accelerating reactive-flow simulations using vectorized chemistry integration. Computer Physics Communications, 2022, 278, 108409.	3.0	1
180	Autoignition of Jet Fuels under High Pressure and Low-to-intermediate Temperatures. , 2009, , .		0

#	Article	IF	CITATIONS
181	A Computational Study of the Ignition of Premixed Methane and Oxygen via a Hot Stream. , 2009, , .		0
182	Laminar Flame Speeds and Extinction Stretch Rates of Selected Aromatic Hydrocarbons. , 2011, , .		0
183	Ignition Delay Study of Moist Syngas/Oxidizer and Hydrogen/Oxidizer Mixtures using a Rapid Compression Machine. , 2011, , .		0
184	Experimental Characterization of Fuel-Air Mixing in a Multi-Hole Tube. , 2011, , .		0
185	Influence of Boundary Conditions on Flame Propagation. , 2009, , .		0
186	The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study. , 2018, , .		0
187	Combustion Instabilities of Separated Stratified Swirling Flames With Different Degrees of Premixedness. , 2019, , .		0