List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8160641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mammalian-type thioredoxin reductase 1 confers a high-light tolerance to the green alga Chlamydomonas reinhardtii. Biochemical and Biophysical Research Communications, 2022, 596, 97-103.	1.0	4
2	Verification of the Relationship between Redox Regulation of Thioredoxin Target Proteins and Their Proximity to Thylakoid Membranes. Antioxidants, 2022, 11, 773.	2.2	0
3	The Importance of the C-Terminal Cys Pair of Phosphoribulokinase in Phototrophs in Thioredoxin-Dependent Regulation. Plant and Cell Physiology, 2022, 63, 855-868.	1.5	4
4	Biochemical Basis for Redox Regulation of Chloroplast-Localized Phosphofructokinase from <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 401-410.	1.5	16
5	Thioredoxin pathway in <i>Anabaena</i> sp. PCC 7120: activity of NADPH-thioredoxin reductase C. Journal of Biochemistry, 2021, 169, 709-719.	0.9	3
6	Redox regulation of NADP-malate dehydrogenase is vital for land plants under fluctuating light environment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
7	The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I. IScience, 2021, 24, 102059.	1.9	3
8	Characterization of Chlamydomonas reinhardtii Mutants That Exhibit Strong Positive Phototaxis. Plants, 2021, 10, 1483.	1.6	3
9	The phototroph-specific β-hairpin structure of the γ subunit of FoF1-ATP synthase is important for efficient ATP synthesis of cyanobacteria. Journal of Biological Chemistry, 2021, 297, 101027.	1.6	8
10	Monitoring cellular redox dynamics using newly developed BRET-based redox sensor proteins. Journal of Biological Chemistry, 2021, 297, 101186.	1.6	0
11	Rapid estimation of cytosolic ATP concentration from the ciliary beating frequency in the green alga Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2021, 296, 100156.	1.6	4
12	A luminescent Nanoluc-GFP fusion protein enables readout of cellular pH in photosynthetic organisms. Journal of Biological Chemistry, 2021, 296, 100134.	1.6	14
13	The four-celled Volvocales green alga Tetrabaena socialis exhibits weak photobehavior and high-photoprotection ability. PLoS ONE, 2021, 16, e0259138.	1.1	2
14	Oxidative regulation of chloroplast enzymes by thioredoxin and thioredoxin-like proteins in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
15	Thioredoxin targets are regulated in heterocysts of cyanobacterium Anabaena sp. PCC 7120 in a light-independent manner. Journal of Experimental Botany, 2020, 71, 2018-2027.	2.4	9
16	Structural basis for thioredoxin isoformâ€based fineâ€ŧuning of ferredoxinâ€ŧhioredoxin reductase activity. Protein Science, 2020, 29, 2538-2545.	3.1	11
17	Chloroplast ATP synthase is reduced by both f-type and m-type thioredoxins. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148261.	0.5	22
18	Regulation machineries of ATP synthase from phototroph. Advances in Botanical Research, 2020, 96, 1-26.	0.5	2

#	Article	IF	CITATIONS
19	Biochemical insight into redox regulation of plastidial 3-phosphoglycerate dehydrogenase from Arabidopsis thaliana. Journal of Biological Chemistry, 2020, 295, 14906-14915.	1.6	7
20	Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16019-16026.	3.3	19
21	Cilia Loss and Dynein Assembly Defects in Planaria Lacking an Outer Dynein Arm-Docking Complex Subunit. Zoological Science, 2020, 37, 7.	0.3	5
22	Impact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins. Journal of Biological Chemistry, 2019, 294, 17437-17450.	1.6	24
23	The thioredoxin (Trx) redox state sensor protein can visualize Trx activities in the light/dark response in chloroplasts. Journal of Biological Chemistry, 2019, 294, 12091-12098.	1.6	28
24	The β-hairpin region of the cyanobacterial F1-ATPase γ-subunit plays a regulatory role in the enzyme activity. Biochemical Journal, 2019, 476, 1771-1780.	1.7	5
25	Thioredoxin-like2/2-Cys peroxiredoxin redox cascade acts as oxidative activator of glucose-6-phosphate dehydrogenase in chloroplasts. Biochemical Journal, 2019, 476, 1781-1790.	1.7	23
26	The N-terminal region of the ε subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity. Journal of Biological Chemistry, 2019, 294, 10094-10103.	1.6	3
27	Thiol-based Redox Regulation in Plant Chloroplasts. Signaling and Communication in Plants, 2019, , 1-17.	0.5	3
28	Disruption of the Gene trx-m1 Impedes the Growth of Anabaena sp. PCC 7120 under Nitrogen Starvation. Plant and Cell Physiology, 2019, 60, 1504-1513.	1.5	5
29	Multicolor redox sensor proteins can visualize redox changes in various compartments of the living cell. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1098-1107.	1.1	8
30	Light-inducible expression of translation factor EF-Tu during acclimation to strong light enhances the repair of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21268-21273.	3.3	27
31	New Light on Chloroplast Redox Regulation: Molecular Mechanism of Protein Thiol Oxidation. Frontiers in Plant Science, 2019, 10, 1534.	1.7	32
32	Simple Method to Determine Protein Redox State in Arabidopsis thaliana. Bio-protocol, 2019, 9, e3250.	0.2	10
33	Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium <i>Anabaena</i> sp. PCC 7120. Biochemical Journal, 2018, 475, 1091-1105.	1.7	16
34	Spatio-Temporal Gene Induction Systems in the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology, 2018, 59, 82-89.	1.5	15
35	Oxidation of Translation Factor EF-Tu Inhibits the Repair of Photosystem II. Plant Physiology, 2018, 176, 2691-2699.	2.3	39
36	Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology, 2018, 59, 119-127.	1.5	51

#	Article	IF	CITATIONS
37	Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F1 ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 319-325.	0.5	3
38	Determining the Rate-Limiting Step for Light-Responsive Redox Regulation in Chloroplasts. Antioxidants, 2018, 7, 153.	2.2	16
39	Structure of the γ–ε complex of cyanobacterial F1-ATPase reveals a suppression mechanism of the γ subunit on ATP hydrolysis in phototrophs. Biochemical Journal, 2018, 475, 2925-2939.	1.7	13
40	Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8296-E8304.	3.3	101
41	Assessment of the flagellar redox potential in Chlamydomonas reinhardtii using a redox-sensitive fluorescent protein, Oba-Qc. Biochemical and Biophysical Research Communications, 2018, 503, 2083-2088.	1.0	5
42	The Absence of Thioredoxin m1 and Thioredoxin C in Anabaena sp. PCC 7120 Leads to Oxidative Stress. Plant and Cell Physiology, 2018, 59, 2432-2441.	1.5	7
43	Development of heme protein based oxygen sensing indicators. Scientific Reports, 2018, 8, 11849.	1.6	14
44	Ferredoxin/thioredoxin system plays an important role in the chloroplastic <scp>NADP</scp> status of Arabidopsis. Plant Journal, 2018, 95, 947-960.	2.8	44
45	Post-Translational Regulation of the Dicing Activities of Arabidopsis DICER-LIKE 3 and 4 by Inorganic Phosphate and the Redox State. Plant and Cell Physiology, 2017, 58, pcw226.	1.5	15
46	Distinct electron transfer from ferredoxin–thioredoxin reductase to multiple thioredoxin isoforms in chloroplasts. Biochemical Journal, 2017, 474, 1347-1360.	1.7	54
47	A Î ³ -subunit point mutation in Chlamydomonas reinhardtii chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 966-974.	0.5	13
48	Designing Synthetic Flexible Gene Regulation Networks Using RNA Devices in Cyanobacteria. ACS Synthetic Biology, 2017, 6, 55-61.	1.9	26
49	Expression of mammalian mitochondrial F1 -ATPase in Escherichia coli depends on two chaperone factors, AF1 and AF2. FEBS Open Bio, 2016, 6, 1267-1272.	1.0	5
50	Functional Significance of NADPH-Thioredoxin Reductase C in the Antioxidant Defense System of CyanobacteriumAnabaenasp. PCC 7120. Plant and Cell Physiology, 2016, 58, pcw182.	1.5	16
51	<i>Anabaena</i> sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers. Proteins: Structure, Function and Bioinformatics, 2016, 84, 31-42.	1.5	14
52	Eyespot-dependent determination of the phototactic sign in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5299-5304.	3.3	70
53	Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3967-76.	3.3	119
54	Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium <i>Anabaena</i> sp. PCC 7120. Plant and Cell Physiology, 2016, 57, 387-396.	1.5	24

#	Article	IF	CITATIONS
55	Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 810-818.	0.5	40
56	Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2016, 291, 5860-5870.	1.6	41
57	Identification of OmpR-Family Response Regulators Interacting with Thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE, 2015, 10, e0119107.	1.1	14
58	Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 441-450.	0.5	10
59	Redox sensor proteins for highly sensitive direct imaging of intracellular redox state. Biochemical and Biophysical Research Communications, 2015, 457, 242-248.	1.0	33
60	Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts. Journal of Biological Chemistry, 2015, 290, 14278-14288.	1.6	87
61	Oxidation of translation factor EF-G transiently retards the translational elongation cycle in <i>Escherichia coli</i> . Journal of Biochemistry, 2015, 158, 165-172.	0.9	14
62	Involvement of thioredoxin on the scaffold activity of NifU in heterocyst cells of the diazotrophic cyanobacteriumAnabaenasp. strain PCC 7120. Journal of Biochemistry, 2015, 158, 253-261.	0.9	9
63	Direct determination of the redox status of cysteine residues in proteins in vivo. Biochemical and Biophysical Research Communications, 2015, 456, 339-343.	1.0	8
64	Development of DNA-based maleimide compound for titration of thiols in a protein. Seibutsu Butsuri Kagaku, 2014, 58, 83-85.	0.1	0
65	Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Frontiers in Environmental Science, 2014, 2, .	1.5	32
66	Reversible control of F1-ATPase rotational motion using a photochromic ATP analog at the single molecule level. Biochemical and Biophysical Research Communications, 2014, 446, 358-363.	1.0	2
67	Distinct Redox Behaviors of Chloroplast Thiol Enzymes and their Relationships with Photosynthetic Electron Transport in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 1415-1425.	1.5	63
68	The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery. Antioxidants and Redox Signaling, 2013, 19, 1846-1854.	2.5	74
69	DNA-maleimide: An improved maleimide compound for electrophoresis-based titration of reactive thiols in a specific protein. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3077-3081.	1.1	13
70	Redox Control of the Activity of Phosphoglycerate Kinase in Synechocystis sp. PCC6803. Plant and Cell Physiology, 2013, 54, 484-491.	1.5	37
71	ThioredoxinÂ <i>h</i> regulates calcium dependent protein kinases in plasma membranes. FEBS Journal, 2013, 280, 3220-3231.	2.2	27
72	A Single Amino Acid Alteration in PGR5 Confers Resistance to Antimycin A in Cyclic Electron Transport around PSI. Plant and Cell Physiology, 2013, 54, 1525-1534.	1.5	59

#	Article	IF	CITATIONS
73	Kinetic analysis of the interactions between plant thioredoxin and target proteins. Frontiers in Plant Science, 2013, 4, 508.	1.7	8
74	Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. Plant and Cell Physiology, 2013, 54, 875-892.	1.5	111
75	A Conformational Change of the γ Subunit Indirectly Regulates the Activity of Cyanobacterial F1-ATPase. Journal of Biological Chemistry, 2012, 287, 38695-38704.	1.6	10
76	Thiol Modulation of the Chloroplast ATP Synthase is Dependent on the Energization of Thylakoid Membranes. Plant and Cell Physiology, 2012, 53, 626-634.	1.5	44
77	Crystal structures of dyeâ€decolorizing peroxidase with ascorbic acid and 2,6â€dimethoxyphenol. FEBS Letters, 2012, 586, 4351-4356.	1.3	43
78	Elongation Factor G Is a Critical Target during Oxidative Damage to the Translation System of Escherichia coli*. Journal of Biological Chemistry, 2012, 287, 28697-28704.	1.6	20
79	Torque Generation and Utilization in Motor Enzyme F0F1-ATP Synthase. Journal of Biological Chemistry, 2012, 287, 1884-1891.	1.6	38
80	Redox Regulation of Carbonic Anhydrases via Thioredoxin in Chloroplast of the Marine Diatom Phaeodactylum tricornutum. Journal of Biological Chemistry, 2012, 287, 20689-20700.	1.6	37
81	The catalytic mechanism of dyeâ€decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS Journal, 2011, 278, 2387-2394.	2.2	72
82	Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by Î ³ and â ^{~-} Subunits Is Significant for Light/Dark Adaptation. Journal of Biological Chemistry, 2011, 286, 26595-26602.	1.6	30
83	Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation, 2011, 22, 1239-1245.	1.5	63
84	Characterization of the Relationship between ADP- and ϵ-induced Inhibition in Cyanobacterial F1-ATPase. Journal of Biological Chemistry, 2011, 286, 13423-13429.	1.6	18
85	Redox Regulation of Rotation of the Cyanobacterial F1-ATPase Containing Thiol Regulation Switch. Journal of Biological Chemistry, 2011, 286, 9071-9078.	1.6	26
86	Knockdown of DAPIT (Diabetes-associated Protein in Insulin-sensitive Tissue) Results in Loss of ATP Synthase in Mitochondria. Journal of Biological Chemistry, 2011, 286, 20292-20296.	1.6	59
87	Structural and functional analysis of the intrinsic inhibitor subunit ϵ of F1-ATPase from photosynthetic organisms. Biochemical Journal, 2010, 425, 85-98.	1.7	25
88	The PedR transcriptional regulator interacts with thioredoxin to connect photosynthesis with gene expression in cyanobacteria. Biochemical Journal, 2010, 431, 135-140.	1.7	34
89	Physiological Impact of Intrinsic ADP Inhibition of Cyanobacterial FoF1 Conferred by the Inherent Sequence Inserted into the γ Subunit. Plant and Cell Physiology, 2010, 51, 855-865.	1.5	34
90	CcdA Is a Thylakoid Membrane Protein Required for the Transfer of Reducing Equivalents from Stroma to Thylakoid Lumen in the Higher Plant Chloroplast. Antioxidants and Redox Signaling, 2010, 13, 1169-1176.	2.5	58

6

#	Article	IF	CITATIONS
91	Regulation of Translation by the Redox State of Elongation Factor G in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2009, 284, 18685-18691.	1.6	63
92	Roles of Thioredoxins in the Obligate Anaerobic Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Molecular Plant, 2009, 2, 336-343.	3.9	18
93	Identification of Thioredoxin Targeted Proteins Using Thioredoxin Single-Cysteine Mutant-Immobilized Resin. Methods in Molecular Biology, 2009, 479, 117-131.	0.4	24
94	Chapter 7 Physiological Impact of Thioredoxin- and Glutaredoxin-Mediated Redox Regulation in Cyanobacteria. Advances in Botanical Research, 2009, 52, 187-205.	0.5	6
95	Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochemical and Photobiological Sciences, 2008, 7, 1188-1195.	1.6	66
96	Binary Reducing Equivalent Pathways Using NADPH-Thioredoxin Reductase and Ferredoxin-Thioredoxin Reductase in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Plant and Cell Physiology, 2008, 49, 11-18.	1.5	52
97	Molecular Processes of Inhibition and Stimulation of ATP Synthase Caused by the Phytotoxin Tentoxin. Journal of Biological Chemistry, 2008, 283, 24594-24599.	1.6	35
98	The Bottom Part of the \hat{I}^3 Subunit of F1-ATPase is Important for Catalytic Activity. , 2008, , 601-604.		0
99	Thioredoxin Potential Target Proteins in Green Sulfur Bacterium Chlorobaculum tepidum. , 2008, , 631-634.		0
100	Functional Analysis of HCF164, a Thioredoxin-Like Protein in the Thylakoid Lumen. , 2008, , 929-932.		0
101	The CHL11 Subunit of Arabidopsis thaliana Magnesium Chelatase Is a Target Protein of the Chloroplast Thioredoxin*. Journal of Biological Chemistry, 2007, 282, 19282-19291.	1.6	131
102	The Significance of Type II and PrxQ Peroxiredoxins for Antioxidative Stress Response in the Purple Bacterium Rhodobacter sphaeroides. Journal of Biological Chemistry, 2007, 282, 27792-27801.	1.6	24
103	In vitro reconstitution of monogalactosyldiacylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Letters, 2006, 580, 4086-4090.	1.3	41
104	The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the É> subunit. EMBO Journal, 2006, 25, 4596-4604.	3.5	74
105	Towards a Functional Dissection of Thioredoxin Networks in Plant Cells. Photochemistry and Photobiology, 2006, 83, 145-51.	1.3	47
106	Thioredoxin-h1 Reduces and Reactivates the Oxidized Cytosolic Malate Dehydrogenase Dimer in Higher Plants*. Journal of Biological Chemistry, 2006, 281, 32065-32071.	1.6	56
107	HCF164 Receives Reducing Equivalents from Stromal Thioredoxin across the Thylakoid Membrane and Mediates Reduction of Target Proteins in the Thylakoid Lumen. Journal of Biological Chemistry, 2006, 281, 35039-35047.	1.6	133
108	Thioredoxin affinity chromatography: a useful method for further understanding the thioredoxin network. Journal of Experimental Botany, 2005, 56, 1463-1468.	2.4	65

#	Article	IF	CITATIONS
109	Anti-oxidative Stress System in Cyanobacteria. Journal of Biological Chemistry, 2005, 280, 840-846.	1.6	102
110	Complete Inhibition and Partial Re-activation of Single F1-ATPase Molecules by Tentoxin. Journal of Biological Chemistry, 2004, 279, 9685-9688.	1.6	7
111	A thermostable enzyme as an experimental platform to study properties of less stable homologues. Protein Engineering, Design and Selection, 2004, 17, 553-555.	1.0	1
112	VOZ; Isolation and Characterization of Novel Vascular Plant Transcription Factors with a One-Zinc Finger from Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 845-854.	1.5	83
113	Inverse Regulation of Rotation of F1-ATPase by the Mutation at the Regulatory Region on the Î ³ Subunit of Chloroplast ATP Synthase. Journal of Biological Chemistry, 2004, 279, 16272-16277.	1.6	23
114	Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 18-27.	1.5	198
115	Two cAMP receptor proteins with different biochemical properties in the filamentous cyanobacteriumAnabaenasp. PCC 7120. FEBS Letters, 2004, 571, 154-160.	1.3	10
116	Significance of the ε subunit in the thiol modulation of chloroplast ATP synthase. Biochemical and Biophysical Research Communications, 2004, 318, 17-24.	1.0	16
117	Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. FEBS Letters, 2003, 545, 71-75.	1.3	26
118	Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the Î ³ subunit. Biochemical and Biophysical Research Communications, 2003, 301, 311-316.	1.0	3
119	Chloroplast Cyclophilin Is a Target Protein of Thioredoxin. Journal of Biological Chemistry, 2003, 278, 31848-31852.	1.6	130
120	Substitution of a Single Amino Acid Switches the Tentoxin-resistant Thermophilic F1-ATPase into a Tentoxin-sensitive Enzyme. Journal of Biological Chemistry, 2002, 277, 20117-20119.	1.6	6
121	Molecular devices of chloroplast F1-ATP synthase for the regulation. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 140-146.	0.5	40
122	A facilitated electron transfer of copper–zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 151-158.	1.1	74
123	ATP synthase — a marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology, 2001, 2, 669-677.	16.1	823
124	Thioredoxin-Mediated Reductive Activation of a Protein Kinase for the Regulatory Phosphorylation of C4-form Phosphoenolpyruvate Carboxylase from Maize. Plant and Cell Physiology, 2001, 42, 1295-1302.	1.5	52
125	Synchronized Domain-opening Motion of GroEL Is Essential for Communication between the Two Rings. Journal of Biological Chemistry, 2001, 276, 11335-11338.	1.6	22
126	The Role of the βDELSEED Motif of F1-ATPase. Journal of Biological Chemistry, 2001, 276, 23969-23973.	1.6	70

#	Article	IF	CITATIONS
127	Redox Regulation of the Rotation of F1-ATP Synthase. Journal of Biological Chemistry, 2001, 276, 39505-39507.	1.6	63
128	Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11224-11229.	3.3	362
129	Inverse regulation of F1-ATPase activity by a mutation at the regulatory region on the Î ³ subunit of chloroplast ATP synthase. Biochemical Journal, 2000, 352, 783.	1.7	12
130	Movement of the Helical Domain of the ε Subunit Is Required for the Activation of Thermophilic F1-ATPase. Journal of Biological Chemistry, 2000, 275, 35746-35750.	1.6	45
131	ATPase Activity of a Highly Stable α3β3γ Subcomplex of Thermophilic F1 Can Be Regulated by the Introduced Regulatory Region of γ Subunit of Chloroplast F1. Journal of Biological Chemistry, 2000, 275, 12757-12762.	1.6	28
132	Identification and Characterization of a Novel cAMP Receptor Protein in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2000, 275, 6241-6245.	1.6	46
133	Inverse regulation of F1-ATPase activity by a mutation at the regulatory region on the Î ³ subunit of chloroplast ATP synthase. Biochemical Journal, 2000, 352, 783-788.	1.7	22
134	Îμ Subunit, an Endogenous Inhibitor of Bacterial F1-ATPase, Also Inhibits F0F1-ATPase. Journal of Biological Chemistry, 1999, 274, 33991-33994.	1.6	83
135	The noncatalytic site-deficient alpha3beta3gamma subcomplex and FoF1-ATP synthase can continuously catalyse ATP hydrolysis when Pi is present. FEBS Journal, 1999, 262, 563-568.	0.2	15
136	The Î ³ subunit in chloroplast F1-ATPase can rotate in a unidirectional and counter-clockwise manner. FEBS Letters, 1999, 463, 35-38.	1.3	68
137	Chloroplast thioredoxin mutants without active-site cysteines facilitate the reduction of the regulatory disulphide bridge on the γ-subunit of chloroplast ATP synthase. Biochemical Journal, 1999, 341, 157.	1.7	16
138	Chloroplast thioredoxin mutants without active-site cysteines facilitate the reduction of the regulatory disulphide bridge on the γ-subunit of chloroplast ATP synthase. Biochemical Journal, 1999, 341, 157-163.	1.7	38
139	The β subunit of chloroplast ATP synthase (CF0CF1-ATPase) is phosphorylated by casein kinase II. IUBMB Life, 1998, 46, 99-105.	1.5	30
140	ATP Synthesis by F0F1-ATP Synthase Independent of Noncatalytic Nucleotide Binding Sites and Insensitive to Azide Inhibition. Journal of Biological Chemistry, 1998, 273, 865-870.	1.6	69
141	The Formation or the Reduction of a Disulfide Bridge on the γ Subunit of Chloroplast ATP Synthase Affects the Inhibitory Effect of the Îμ Subunit. Journal of Biological Chemistry, 1998, 273, 15901-15905.	1.6	23
142	Thermophilic F1-ATPase Is Activated without Dissociation of an Endogenous Inhibitor, ε Subunit. Journal of Biological Chemistry, 1997, 272, 24906-24912.	1.6	66
143	The Regulatory Functions of the gamma and e Subunits from Chloroplast CF1 are Transferred to the Core Complex, alpha3beta3, from Thermophilic Bacterial F1. FEBS Journal, 1997, 247, 1158-1165.	0.2	33
144	Structural Asymmetry of F1-ATPase Caused by the Î ³ Subunit Generates a High Affinity Nucleotide Binding Site. Journal of Biological Chemistry, 1996, 271, 2433-2438.	1.6	71

#	Article	IF	CITATIONS
145	The Heterogeneous Interaction of Substoichiometric TNP-ATP and F1 -ATPase from Escherichia coli. Journal of Biochemistry, 1996, 120, 940-945.	0.9	4
146	Catalytic Activities of α3β3γ Complexes of F1-ATPase with 1, 2, or 3 Incompetent Catalytic Sites. Journal of Biological Chemistry, 1996, 271, 18128-18133.	1.6	21
147	Asymmetry of the Three Catalytic Sites on β Subunits of TF1 from a Thermophilic Bacillus Strain PS31. Journal of Biochemistry, 1994, 115, 497-501.	0.9	12
148	Catalytic cooperativity of beef heart mitochondrial F1-ATPase revealed by using 2′,3′-O-(2,4,6-trinitrophenyl)-ATP as a substrate; an indication of mutually activating catalytic sites. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 108-116.	0.5	6
149	AT(D)PMg-induced dissociation of the α3 β3 complex of the F1 -ATPase from a thermophilic Bacillus PS3 into α1 β1 heterodimers is prevented by mutation β(Y341C). FEBS Letters, 1993, 321, 46-50.	1.3	3
150	Effect of Covalent Binding of a Derivative of 2', 3'-O-(2, 4, 6-Trinitrophenyl).ADP to the Tight Binding Site of CF1 on the Enzyme Activity1. Journal of Biochemistry, 1993, 114, 324-328.	0.9	8
151	Magnesium Regulates Both the Nucleotide Binding and the Enzyme Activity of Isolated Chloroplast Coupling Factor 11. Journal of Biochemistry, 1993, 114, 808-812.	0.9	10
152	Single site hydrolysis of 2',3'-O-(2,4,6-trinitrophenyl)-ATP by the F1-ATPase from thermophilic bacterium PS3 is accelerated by the chase-addition of excess ATP. Journal of Biological Chemistry, 1992, 267, 4551-6.	1.6	41
153	Two-dimensional gel electrophoresis of the membrane-bound protein complexes, including photosystem I, of thylakoid membranes in the presence of sodium oligooxyethylene alkyl ether sulfate/dimethyl dodecylamine oxide and sodium dodecyl sulfate. Journal of Proteomics, 1991, 22, 253-260.	2.4	12
154	The 55-kDa polypeptide released from spinach thylakoid membranes with 1 M LiCl is not the beta subunit of chloroplast F1. Journal of Biological Chemistry, 1990, 265, 13419-22.	1.6	4
155	Reconstituted F1-ATPase Complexes Containing One Impaired Î ² Subunit Are ATPase-Active. Journal of Biochemistry, 1989, 106, 679-683.	0.9	24
156	Characterization of Nucleotide Binding Sites on Chloroplast Coupling Factor 1 (CF1): Effects of Nucleotide Triphosphate Formation by Isolated CF1. , 1989, , 267-271.		0
157	The reconstituted alpha 3 beta 3 delta complex of the thermostable F1-ATPase. Journal of Biological Chemistry, 1989, 264, 21837-41.	1.6	29
158	Site-directed mutagenesis of stable adenosine triphosphate synthase. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 156-164.	0.5	74
159	Effects of Organic Solvents on the Enzyme-Bound ATP Synthesis by Isolated CF1. , 1987, , 13-16.		2
160	ADP Binding to TF1 and Its Subunits Induces Ultraviolet Spectral Changes1. Journal of Biochemistry, 1986, 100, 663-670.	0.9	34
161	Effect of Methanol on the Nucleotide Binding to High-Affinity Sites on Chloroplast Coupling Factor 1. Plant and Cell Physiology, 1985, 26, 505-514.	1.5	9
162	Enhancement of Adenosine Triphosphatase Activity of Purified Chloroplast Coupling Factor 1 in an Aqueous rganic Solvent1. Journal of Biochemistry, 1981, 90, 95-102.	0.9	66