Kang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81606/publications.pdf Version: 2024-02-01

KANG WANG

#	Article	IF	CITATIONS
1	Labelâ€Free Electrochemiluminescence Imaging of Singleâ€Cell Adhesions by Using Bipolar Nanoelectrode Array. Chemistry - A European Journal, 2022, 28, e202103964.	1.7	14
2	Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Analytical Chemistry, 2022, 94, 503-514.	3.2	25
3	Single Molecule DNA Analysis Based on Atomic-Controllable Nanopores in Covalent Organic Frameworks. Nano Letters, 2022, 22, 1358-1365.	4.5	23
4	Gold Nanowires Array-Based Closed Bipolar Nanoelectrode System for Electrochemiluminescence Detection of α-Fetoprotein on Cell Surface. Analytical Chemistry, 2022, 94, 7350-7357.	3.2	25
5	Construction of metal-organic frameworks-nucleic acids composites and their application in fluorescent biomedical sensing. Scientia Sinica Chimica, 2022, , .	0.2	0
6	Nanopore-based surface-enhanced Raman scattering technologies. Science Bulletin, 2022, 67, 1539-1541.	4.3	5
7	High Spatial Resolution of Ultrathin Covalent Organic Framework Nanopores for Single-Molecule DNA Sensing. Analytical Chemistry, 2022, 94, 9851-9855.	3.2	12
8	Three-Dimensional Metamaterial for Plasmon-Enhanced Raman Scattering at any Excitation Wavelengths from the Visible to Near-Infrared Range. Analytical Chemistry, 2021, 93, 1409-1415.	3.2	8
9	Free-Standing Single Ag Nanowires for Multifunctional Optical Probes. ACS Applied Materials & Interfaces, 2021, 13, 19023-19030.	4.0	8
10	Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Analytical Chemistry, 2021, 93, 8544-8552.	3.2	117
11	Mass transport through a sub-10Ânm single gold nanopore: SERS and ionic current measurement. Journal of Electroanalytical Chemistry, 2021, 894, 115373.	1.9	6
12	Probing Multidimensional Structural Information of Single Molecules Transporting through a Sub-10 nm Conical Plasmonic Nanopore by SERS. Analytical Chemistry, 2021, 93, 11679-11685.	3.2	15
13	Fabrication of High-Density and Superuniform Gold Nanoelectrode Arrays for Electrochemical Fluorescence Imaging. Analytical Chemistry, 2020, 92, 13493-13499.	3.2	22
14	d–sp Interband Transition Excited Carriers Promoting the Photochemical Growth of Plasmonic Gold Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 8322-8328.	2.1	18
15	SERS Detection of Nucleobases in Single Silver Plasmonic Nanopores. ACS Sensors, 2020, 5, 2198-2204.	4.0	24
16	pHâ€Dependent Slipping and Exfoliation of Layered Covalent Organic Framework. Chemistry - A European Journal, 2020, 26, 12996-13001.	1.7	35
17	Mass Transfer Modulation and Gas Mapping Based on Covalent Organic Frameworks-Covered Theta Micropipette. Analytical Chemistry, 2020, 92, 7343-7348.	3.2	11
18	End Group Properties of Thiols Affecting the Self-Assembly Mechanism at Gold Nanoparticles Film As Evidenced by Water Infrared Probe. Analytical Chemistry, 2019, 91, 14508-14513.	3.2	7

Kang Wang

#	Article	IF	CITATIONS
19	Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chemical Communications, 2019, 55, 6397-6400.	2.2	40
20	Specific cell capture and noninvasive release via moderate electrochemical oxidation of boronic ester linkage. Biosensors and Bioelectronics, 2019, 138, 111316.	5.3	6
21	Surface-Enhanced Raman Scattering Probing the Translocation of DNA and Amino Acid through Plasmonic Nanopores. Analytical Chemistry, 2019, 91, 6275-6280.	3.2	33
22	Gas molecule modulated ionic migration through graphene oxide laminates. Journal of Electroanalytical Chemistry, 2019, 840, 182-186.	1.9	2
23	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	5.8	199
24	Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20398-20403.	3.3	34
25	Structural Change of a Single Ag Nanoparticle Observed by Darkâ€field Microspectroscopy. ChemPhysChem, 2018, 19, 954-958.	1.0	8
26	A single nanoparticle-based real-time monitoring of biocatalytic progress and detection of hydrogen peroxide. Talanta, 2018, 185, 581-585.	2.9	6
27	A Multiparameter pH ensitive Nanodevice Based on Plasmonic Nanopores. Advanced Functional Materials, 2018, 28, 1703847.	7.8	43
28	Strategy for In Situ Imaging of Cellular Alkaline Phosphatase Activity Using Gold Nanoflower Probe and Localized Surface Plasmon Resonance Technique. Analytical Chemistry, 2018, 90, 14056-14062.	3.2	70
29	An <i>in situ</i> SERS study of ionic transport and the Joule heating effect in plasmonic nanopores. Chemical Communications, 2018, 54, 13236-13239.	2.2	10
30	Exploring the Confinement Effect of Carbon Nanotubes on the Electrochemical Properties of Prussian Blue Nanoparticles. Langmuir, 2018, 34, 6983-6990.	1.6	14
31	Organic Cyanide Decorated SERS Active Nanopipettes for Quantitative Detection of Hemeproteins and Fe ³⁺ in Single Cells. Analytical Chemistry, 2017, 89, 2522-2530.	3.2	62
32	Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy: a Powerful Technique for Bioanalysis. Journal of Analysis and Testing, 2017, 1, 1.	2,5	18
33	In Situ Detection and Imaging of Telomerase Activity in Cancer Cell Lines via Disassembly of Plasmonic Core–Satellites Nanostructured Probe. Analytical Chemistry, 2017, 89, 7262-7268.	3.2	52
34	Insight into Ion Transfer through the Subâ€Nanometer Channels in Zeolitic Imidazolate Frameworks. Angewandte Chemie, 2017, 129, 4845-4849.	1.6	26
35	Insight into Ion Transfer through the Subâ€Nanometer Channels in Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2017, 56, 4767-4771.	7.2	66
36	Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Materials, 2017, 9, e354-e354.	3.8	144

Kang Wang

#	Article	IF	CITATIONS
37	Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding. Analytical Chemistry, 2017, 89, 11366-11371.	3.2	81
38	Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells. Analytical Chemistry, 2017, 89, 9911-9917.	3.2	56
39	Size-Controllable Gold Nanopores with High SERS Activity. Analytical Chemistry, 2017, 89, 10407-10413.	3.2	42
40	An Electrochemical Study of the Surface Hybridization Process of Morpholinoâ€DNA: Thermodynamics and Kinetics. Electroanalysis, 2016, 28, 1647-1653.	1.5	2
41	Morphology Controlled Poly(aminophenylboronic acid) Nanostructures as Smart Substrates for Enhanced Capture and Release of Circulating Tumor Cells. Advanced Functional Materials, 2015, 25, 6122-6130.	7.8	59
42	Morpholino-Functionalized Nanochannel Array for Label-Free Single Nucleotide Polymorphisms Detection. Analytical Chemistry, 2015, 87, 3936-3941.	3.2	53
43	Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species. Analytical Chemistry, 2015, 87, 6828-6833.	3.2	47
44	Propagation of Concentration Polarization Affecting lons Transport in Branching Nanochannel Array. Analytical Chemistry, 2015, 87, 8194-8202.	3.2	41
45	Highly Stable and Luminescent Layered Hybrid Materials for Sensitive Detection of TNT Explosives. Analytical Chemistry, 2015, 87, 4530-4537.	3.2	32
46	Structure orientation of hemin self-assembly layer determining the direct electron transfer reaction. Chemical Communications, 2015, 51, 689-692.	2.2	22
47	Distance-determined sensitivity in attenuated total reflection-surface enhanced infrared absorption spectroscopy: aptamer–antigen compared to antibody–antigen. Chemical Communications, 2014, 50, 7787.	2.2	25
48	Conformational change and biocatalysis-triggered spectral shift of single Au nanoparticles. Chemical Communications, 2014, 50, 5480-5483.	2.2	27
49	Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications, 2014, 5, 5285.	5.8	202
50	Donnan Potential Caused by Polyelectrolyte Monolayers. Langmuir, 2014, 30, 10127-10132.	1.6	11
51	lce crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Scientific Reports, 2014, 4, 6723.	1.6	33
52	A green approach to the synthesis of novel "Desert rose stone―like nanobiocatalytic system with excellent enzyme activity and stability. Scientific Reports, 2014, 4, 6606.	1.6	36
53	Sensitive label-free monitoring of protein kinase activity and inhibition using ferric ions coordinated to phosphorylated sites as electrocatalysts. Chemical Communications, 2013, 49, 8788.	2.2	22
54	The Enhanced Enzymolysis Resistance of Surfaceâ€Immobilized DNA Caused by Hybridizing with Morpholino. Electroanalysis, 2013, 25, 1074-1079.	1.5	5

KANG WANG

#	Article	IF	CITATIONS
55	Reversible Plasmonic Probe Sensitive for pH in Micro/Nanospaces Based on i-Motif-Modulated Morpholino-Gold Nanoparticle Assembly. Analytical Chemistry, 2013, 85, 1053-1057.	3.2	43
56	Electric field driven protonation/deprotonation of 3,4,9,10-perylene tetracarboxylic acid immobilized on graphene sheets via π–π stacking. Journal of Electroanalytical Chemistry, 2013, 688, 304-307.	1.9	20
57	Solutionâ€pHâ€Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Advanced Functional Materials, 2013, 23, 3836-3844.	7.8	125
58	Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Chemical Communications, 2012, 48, 2316.	2.2	40
59	A Nanochannel Array-Based Electrochemical Device for Quantitative Label-free DNA Analysis. ACS Nano, 2010, 4, 6417-6424.	7.3	134
60	Molecular Mechanisms in Morpholinoâ^'DNA Surface Hybridization. Journal of the American Chemical Society, 2010, 132, 9663-9671.	6.6	24
61	Morpholino Monolayers: Preparation and Label-free DNA Analysis by Surface Hybridization. Journal of the American Chemical Society, 2009, 131, 4953-4961.	6.6	61
62	Electricâ€Field Distribution at the End of a Charged Capillary—A Coupling Imaging Study. ChemPhysChem, 2008, 9, 2109-2115.	1.0	7
63	Novel Coupling Mechanism-Based Imaging Approach to Scanning Electrochemical Microscopy for Probing the Electric Field Distribution at the Microchannel End. Langmuir, 2006, 22, 7052-7058.	1.6	11
64	Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy. Journal of Chromatography A, 2006, 1110, 222-226.	1.8	12
65	Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochemistry Communications, 2005, 7, 1252-1256.	2.3	69
66	A Dual-Electrode Approach for Highly Selective Detection of Glucose Based on Diffusion Layer Theory: Experiments and Simulation. Chemistry - A European Journal, 2005, 11, 1341-1347.	1.7	26