
Mustafa Bayram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colour and textural attributes of sucuk during ripening. Meat Science, 2006, 73, 344-350.	5.5	124
2	Fitting Fick's model to analyze water diffusion into chickpeas during soaking with ultrasound treatment. Journal of Food Engineering, 2011, 104, 134-142.	5.2	87
3	Approximate analytical solution for the fractional modified KdV by differential transform method. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1777-1782.	3.3	67
4	Changes in properties of soaking water during production of soy-bulgur. Journal of Food Engineering, 2004, 61, 221-230.	5.2	62
5	COVID-19 Digital Health Innovation Policy: A Portal to Alternative Futures in the Making. OMICS A Journal of Integrative Biology, 2020, 24, 460-469.	2.0	62
6	Prehistoric cereal foods from Greece and Bulgaria: investigation of starch microstructure in experimental and archaeological charred remains. Vegetation History and Archaeobotany, 2008, 17, 265-276.	2.1	60
7	Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering, 2005, 69, 253-260.	5.2	54
8	Effect of soaking and ultrasound treatments on texture of chickpea. Journal of Food Science and Technology, 2013, 50, 455-465.	2.8	46
9	Influence of soaking on the dimensions and colour of soybean for bulgur production. Journal of Food Engineering, 2004, 61, 331-339.	5.2	44
10	The analytical solutions of Zoomeron equation via extended rational sin-cos and sinh-cosh methods. Physica Scripta, 2021, 96, 094002.	2.5	43
11	Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics, 2022, 54, .	3.3	43
12	Numerical methods for simulation of stochastic differential equations. Advances in Difference Equations, 2018, 2018, .	3.5	41
13	On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach. Optik, 2021, 245, 167641.	2.9	40
14	Optical Soliton Solutions to Chen Lee Liu model by the modified extended tanh expansion scheme. Optik, 2021, 245, 167643. Optik, 2021, 245, 167643.	2.9	39
15	Id="d1e311" altimg="si3.svg"> <mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo) e1qq.<br="" ij="">Biswas–Milovic equation using modified extended<mml:math< td=""><td>2.9</td><td>14 rgBT /Over 39</td></mml:math<></mml:mo)></mml:mrow>	2.9	14 rgBT /Over 39
16	xmins.mml="http://www.w3.org/1998/Math/MathMt" display="inline" id="d1e325" On the numerical solution of differential-algebraic equations by Padé series. Applied Mathematics and Computation, 2003, 137, 151-160.	2.2	38
17	Effect of cooking time and temperature on the dimensions and crease of the wheat kernel during bulgur production. Journal of Food Engineering, 2004, 64, 43-51.	5.2	32
18	Bulgur milling using roller, double disc and vertical disc mills. Journal of Food Engineering, 2007, 79, 181-187.	5.2	32

#	Article	IF	CITATIONS
19	Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel. Journal of Taibah University for Science, 2019, 13, 813-819.	2.5	32
20	Theory and application for the system of fractional Burger equations with Mittag leffler kernel. Applied Mathematics and Computation, 2020, 367, 124781.	2.2	32
21	Numerical method to solve chemical differential-algebraic equations. International Journal of Quantum Chemistry, 2002, 89, 447-451.	2.0	31
22	Dark-Bright Optical Soliton and Conserved Vectors to the Biswas-Arshed Equation With Third-Order Dispersions in the Absence of Self-Phase Modulation. Frontiers in Physics, 2019, 7, .	2.1	29
23	Stone, disc and hammer milling of bulgur. Journal of Cereal Science, 2005, 41, 291-296.	3.7	28
24	Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Applied Mathematics and Computation, 2003, 137, 57-65.	2.2	27
25	Automatic calculation of the fundamental group of an oriented surface of genus n with k boundary surfaces. Applied Mathematics and Computation, 2005, 162, 1-6.	2.2	27
26	Modelling of cooking of wheat to produce bulgur. Journal of Food Engineering, 2005, 71, 179-186.	5.2	27
27	On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity. Optical and Quantum Electronics, 2022, 54, .	3.3	26
28	The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). Journal of the Franklin Institute, 2005, 342, 1-6.	3.4	25
29	On the numerical solution of stiff systems. Applied Mathematics and Computation, 2005, 170, 230-236.	2.2	25
30	On the solutions of a higherâ€order difference equation in terms of generalized Fibonacci sequences. Mathematical Methods in the Applied Sciences, 2016, 39, 2974-2982.	2.3	25
31	Numerical comparison of methods for solving fractional differential–algebraic equations (FDAEs). Computers and Mathematics With Applications, 2011, 62, 3270-3278.	2.7	24
32	Exact optical solitons of Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Modern Physics Letters B, 2019, 33, 1950061.	1.9	23
33	Numerical Solution of Fractional Benney Equation. Applied Mathematics and Information Sciences, 2014, 8, 1633-1637.	O.5	23
34	Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013, 2013, .	0.7	22
35	The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers' Equations with Time-Fractional Derivative. Mathematics, 2019, 7, 486.	2.2	22
36	Digging Deeper into Precision/Personalized Medicine: Cracking the Sugar Code, the Third Alphabet of Life, and Sociomateriality of the Cell. OMICS A Journal of Integrative Biology, 2020, 24, 62-80.	2.0	21

#	Article	IF	CITATIONS
37	Determination of the sphericity of granular food materials. Journal of Food Engineering, 2005, 68, 385-390.	5.2	20
38	Determination of applicability and effects of colour sorting system in bulgur production line. Journal of Food Engineering, 2006, 74, 232-239.	5.2	20
39	Invariant and simulation analysis to the time fractional Abrahams–Tsuneto reaction diffusion system. Physica Scripta, 2019, 94, 125005.	2.5	20
40	Bulgur milling using a helical disc mill. Journal of Food Engineering, 2008, 87, 564-570.	5.2	19
41	Soliton Solutions of \$\$(2+1)\$\$ Dimensional Heisenberg Ferromagnetic Spin Equation by the Extended Rational \$\$sine-cosine\$\$ and \$\$sinh-cosh\$\$ Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	18
42	Numerical solution of differential–algebraic equation systems and applications. Applied Mathematics and Computation, 2004, 154, 405-413.	2.2	17
43	Numerical solution of differential–algebraic equations with index-2. Applied Mathematics and Computation, 2006, 174, 1279-1289.	2.2	17
44	Some properties of the Mittag-Leffler functions and their relation with the Wright functions. Advances in Difference Equations, 2012, 2012, .	3.5	17
45	Interactive Fuzzy Goal Programming Based on Taylor Series to Solve Multiobjective Nonlinear Programming Problems With Interval Type-2 Fuzzy Numbers. IEEE Transactions on Fuzzy Systems, 2018, 26, 2434-2449.	9.8	17
46	Numerical solutions of chemical differential-algebraic equations. Applied Mathematics and Computation, 2003, 139, 259-264.	2.2	15
47	Convexity of Certainq-Integral Operators ofp-Valent Functions. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	15
48	Horizon Scanning: How Will Metabolomics Applications Transform Food Science, Bioengineering, and Medical Innovation in the Current Era of Foodomics?. OMICS A Journal of Integrative Biology, 2018, 22, 177-183.	2.0	15
49	WHEY POWDER AS A CARRIER IN SPRAY DRYING OF SUMAC CONCENTRATE. Journal of Food Process Engineering, 2008, 31, 105-119.	2.9	14
50	A Hermite Polynomial Approach for Solving the SIR Model of Epidemics. Mathematics, 2018, 6, 305.	2.2	14
51	Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes. Modern Physics Letters B, 2019, 33, 1950224.	1.9	14
52	On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative. Open Physics, 2019, 17, 816-822.	1.7	14
53	Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative. Chaos, Solitons and Fractals, 2021, 145, 110794.	5.1	14
54	Automatic analysis of the control of metabolic networks. Computers in Biology and Medicine, 1996, 26, 401-408.	7.0	13

4

#	Article	IF	CITATIONS
55	Ternary milling of bulgur with four rollers. Journal of Food Engineering, 2008, 84, 394-399.	5.2	13
56	Usage of undersize bulgur flour in production of short-cut pasta-like couscous. Journal of Cereal Science, 2017, 77, 102-109.	3.7	13
57	Characterization of Volatile Compounds of Bulgur (Antep Type) Produced from Durum Wheat. Journal of Food Quality, 2018, 2018, 1-9.	2.6	13
58	On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method. European Physical Journal Plus, 2019, 134, 1.	2.6	13
59	The use of bulgur as a meat replacement: bulgur-sucuk (a vegetarian dry-fermented sausage). Journal of the Science of Food and Agriculture, 2007, 87, 411-419.	3.5	12
60	Solitary wave solutions of chiral nonlinear Schrödinger equations. Modern Physics Letters B, 0, , 2150472.	1.9	12
61	Determination of the cooking degree for bulgur production using amylose/iodine, centre cutting and light scattering methods. Food Control, 2006, 17, 331-335.	5.5	11
62	Improving the color of bulgur: new industrial applications of tempering and UV/sun-light treatments. Journal of Food Science and Technology, 2015, 52, 5579-5589.	2.8	11
63	Modeling of vibration for functionally graded beams. Open Mathematics, 2016, 14, 661-672.	1.0	10
64	Symmetry reductions, explicit solutions, convergence analysis and conservation laws via multipliers approach to the Chen–Lee–Liu model in nonlinear optics. Modern Physics Letters B, 2019, 33, 1950035.	1.9	10
65	A solution method for integro-differential equations of conformable fractional derivative. Thermal Science, 2018, 22, 7-14.	1.1	10
66	Solving the fractional Jaulent–Miodek system via a modified Laplace decomposition method. Waves in Random and Complex Media, 0, , 1-14.	2.7	10
67	Coefficient Estimates and Other Properties for a Class of Spirallike Functions Associated with a Differential Operator. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	9
68	Bulgur cooking process: Recovery of energy and wastewater. Journal of Food Engineering, 2020, 269, 109734.	5.2	9
69	The ordinary successive approximations method and Pad $ ilde{A}$ © approximants for solving a differential equation with variant retarded argument. Applied Mathematics and Computation, 2003, 144, 173-180.	2.2	8
70	On the numerical solution of differential-algebraic equations with index-3. Applied Mathematics and Computation, 2006, 175, 1320-1331.	2.2	8
71	Oscillation criteria for nonlinear fractional differential equation with damping term. Open Physics, 2016, 14, 119-128.	1.7	8
72	Development and characterization of couscous-like product using bulgur flour as by-product. Journal of Food Science and Technology, 2017, 54, 4452-4463.	2.8	8

#	Article	IF	CITATIONS
73	Attitude of the Modulation Instability gain in Oppositely Directed Coupler with the effects of the Intrapulse Raman Scattering and Saturable Function. Results in Physics, 2021, 31, 104851.	4.1	8
74	Novel soliton solutions of Sasa–Satsuma model with local derivative via an analytical technique. Journal of Laser Applications, 2022, 34, .	1.7	8
75	Partial Fractional Equations and Their Applications. Mathematical Problems in Engineering, 2015, 2015, 1-1.	1.1	7
76	Modification of mechanical polishing operation using preheating systems to improve the bulgur color. Journal of Cereal Science, 2017, 75, 108-115.	3.7	7
77	Mathematical modeling of packed bed and microwave drying of enriched couscous. Journal of Food Measurement and Characterization, 2018, 12, 1723-1733.	3.2	7
78	Some new exact solutions for derivative nonlinear Schrödinger equation with the quintic non-Kerr nonlinearity. Modern Physics Letters B, 2020, 34, 2050079.	1.9	7
79	Thanatechnology and the Living Dead: New Concepts in Digital Transformation and Human-Computer Interaction. OMICS A Journal of Integrative Biology, 2021, 25, 401-407.	2.0	7
80	Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	6
81	Is Space the New Frontier for Omics? Mars-Omics, Planetary Science, and the Next-Generation Technology Futurists. OMICS A Journal of Integrative Biology, 2018, 22, 696-699.	2.0	6
82	Interactive goal programming algorithm with Taylor series and interval type 2 fuzzy numbers. International Journal of Machine Learning and Cybernetics, 2019, 10, 1563-1579.	3.6	6
83	COVID-19 Health Technology Governance, Epistemic Competence, and the Future of Knowledge in an Uncertain World. OMICS A Journal of Integrative Biology, 2020, 24, 451-453.	2.0	6
84	Automatic calculation of Alexander polynomials of (3,k)-Torus knots. Applied Mathematics and Computation, 2003, 136, 505-510.	2.2	5
85	WATER ABSORPTION, LEACHING and COLOR CHANGES DURING the SOAKING FOR PRODUCTION of SOY-BULGUR. Journal of Food Process Engineering, 2004, 27, 119-141.	2.9	5
86	The modified successive approximations method and padé approximants for solving the differential equation with variant retarded argumend. Applied Mathematics and Computation, 2004, 151, 393-400.	2.2	5
87	Comparison of unsplit inshell and shelled kernel of the pistachio nuts. Journal of Food Engineering, 2011, 107, 374-378.	5.2	5
88	Stability, Synchronization Control and Numerical Solution of Fractional Shimizu–Morioka Dynamical System. Applied Mathematics and Information Sciences, 2014, 8, 1699-1705.	0.5	5
89	Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions. Thermal Science, 2019, 23, 203-214.	1.1	5
90	The modified two sided approximations method and Padé approximants for solving the differential equation with variant retarded argument. Applied Mathematics and Computation, 2003, 144, 475-482.	2.2	4

Mustafa Bayram

#	Article	IF	CITATIONS
91	Automatic calculation of minimum crossing numbers of 3-braids. Applied Mathematics and Computation, 2003, 144, 507-516.	2.2	4
92	Analytical approximate solution of time-fractional Fornberg–Whitham equation by the fractional variational iteration method. AEJ - Alexandria Engineering Journal, 2014, 53, 911-915.	6.4	4
93	An approximate solution of fractional cable equation by homotopy analysis method. Boundary Value Problems, 2014, 2014, .	0.7	4
94	Oscillation of fractional order functional differential equations with nonlinear damping. Open Physics, 2015, 13, .	1.7	4
95	Parameter estimation in a Black Scholes. Thermal Science, 2018, 22, 117-122.	1.1	4
96	A computer program to calculate Alexander polynomial from Braids presentation of the given knot. Applied Mathematics and Computation, 2004, 153, 199-204.	2.2	3
97	Metabolic control analysis of trio enzymes system. Applied Mathematics and Computation, 2005, 170, 948-957.	2.2	3
98	Polynomial based differential quadrature for numerical solutions of Kuramoto-Sivashinsky equation. Thermal Science, 2019, 23, 129-137.	1.1	3
99	Oscillation properties of solutions of fractional difference equations. Thermal Science, 2019, 23, 185-192.	1.1	3
100	Application of Gröbner basis techniques to enzyme kinetics. Applied Mathematics and Computation, 2004, 153, 97-109.	2.2	2
101	Simultaneous solution of polynomial equations. Applied Mathematics and Computation, 2002, 133, 533-538.	2.2	1
102	Application of computer algebra-techniques to metabolic control analysis. Computational Biology and Chemistry, 2003, 27, 141-146.	2.3	1
103	Application of computer algebra matrix operation techniques to the control of metabolic networks. Applied Mathematics and Computation, 2004, 152, 289-297.	2.2	1
104	The basic successive substitute approximations method and Padé approximations to solve the elasticity problem of settled of the wronkler ground with variable coefficients. Applied Mathematics and Computation, 2004, 154, 495-505.	2.2	1
105	Efficient Variational Approaches for Deformable Registration of Images. Abstract and Applied Analysis, 2012, 2012, 1-8.	0.7	1
106	A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	1
107	A Generalized <mml:math xmins:mml="http://www.w3.org/1998/Math/MathML<br">id="M1"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math> -Gr¼ss Inequality Involving the Riemann-Liouville Fractional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M2"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math> -Integrals. Journal of Applied	0.9	1
108	Mathematics, 2014, 2014, 1-6. The common solution for a generalized equilibrium problem, a variational inequality problem and a hierarchical fixed point problem. Journal of Inequalities and Applications, 2015, 2015, .	1.1	1

#	Article	IF	CITATIONS
109	On Discrete Fractional Solutions of Non-Fuchsian Differential Equations. Mathematics, 2018, 6, 308.	2.2	1
110	Chebyshev Differential Quadrature for Numerical Solutions of Third- and Fourth-Order Singular Perturbation Problems. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2020, 90, 429-436.	1.2	1
111	Approximates Method for Solving an Elasticity Problem of Settled of the Elastic Ground with Variable Coefficients. Applied Mathematics and Information Sciences, 2013, 7, 1351-1357.	0.5	1
112	Oscillatory behavior of solutions of differential equations with fractional order. Applied Mathematics and Information Sciences, 2017, 11, 683-691.	0.5	1
113	Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations. Engineering With Computers, 2023, 39, 1363-1374.	6.1	1
114	A numerical solution of the elasticity problem of settled of the wronkler ground with variable coefficients. Applied Mathematics and Computation, 2004, 150, 821-831.	2.2	0
115	Derivation of conservation relationships for catalytic cycles using MAPLE. Applied Mathematics and Computation, 2005, 160, 189-195.	2.2	0
116	Global Asymptotic Stability for a Fourth-Order Rational Difference Equation. Discrete Dynamics in Nature and Society, 2009, 2009, 1-7.	0.9	0
117	Recent Developments in Integral Transforms, Special Functions, and Their Extensions to Distributions Theory. Abstract and Applied Analysis, 2013, 2013, 1-2.	0.7	0
118	An Application of the Differential Transform Method to the Biochemical Reaction Systems. Applied Mechanics and Materials, 0, 319, 151-156.	0.2	0
119	To Genotype or Phenotype for Drug and Food Safety? Exiting the Technology Echo Chambers. OMICS A Journal of Integrative Biology, 2018, 22, 525-527.	2.0	0
120	The effects of the War on the Syrian Agricultural Food Industry Potential. Turkish Journal of Agriculture: Food Science and Technology, 2020, 8, 1448-1462.	0.3	0
121	New lump interaction complexitons to the (2+1)-dimensional Korteweg-de Vries equation with electrostatic wave potential in plasmas. Journal of Ocean Engineering and Science, 2024, 9, 173-177.	4.3	0