
Sven Rottenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8160162/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Functional genetic dropout screens and in vivo validation of candidate therapeutic targets using mouse mammary tumoroids. STAR Protocols, 2022, 3, 101132.	0.5	1
2	Meiotic Genes and DNA Double Strand Break Repair in Cancer. Frontiers in Genetics, 2022, 13, 831620.	1.1	14
3	Towards a national strategy for digital pathology in Switzerland. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 647-652.	1.4	7
4	The rediscovery of platinum-based cancer therapy. Nature Reviews Cancer, 2021, 21, 37-50.	12.8	452
5	Immunohistochemical Analysis of Programmed Death-Ligand 1 Expression in Equine Sarcoids. Journal of Equine Veterinary Science, 2021, 97, 103338.	0.4	3
6	Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance. Trends in Molecular Medicine, 2021, 27, 630-642.	3.5	18
7	Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Molecular Cell, 2021, 81, 4692-4708.e9.	4.5	40
8	Functional Radiogenetic Profiling Implicates ERCC6L2 in Non-homologous End Joining. Cell Reports, 2020, 32, 108068.	2.9	29
9	Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Frontiers in Oncology, 2020, 10, 670.	1.3	13
10	PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discovery, 2019, 9, 722-737.	7.7	433
11	Radiosensitivity Is an Acquired Vulnerability of PARPi-Resistant BRCA1-Deficient Tumors. Cancer Research, 2019, 79, 452-460.	0.4	42
12	Resistance to PARP Inhibitors: Lessons from Preclinical Models of BRCA-Associated Cancer. Annual Review of Cancer Biology, 2019, 3, 235-254.	2.3	47
13	New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resistance Updates, 2018, 36, 30-46.	6.5	33
14	Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas. Cell Reports, 2018, 23, 100-111.	2.9	60
15	Identification and characterisation of a <i>Theileria annulata</i> proline-rich microtubule and SH3 domain-interacting protein (TaMISHIP) that forms a complex with CLASP1, EB1, and CD2AP at the schizont surface. Cellular Microbiology, 2018, 20, e12838.	1.1	16
16	BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nature Methods, 2018, 15, 134-140.	9.0	110
17	A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell, 2018, 172, 373-386.e10.	13.5	1,201
18	Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response. Genome Medicine, 2018, 10, 101.	3.6	72

SVEN ROTTENBERG

#	Article	IF	CITATIONS
19	The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nature Communications, 2018, 9, 5406.	5.8	74
20	The CST Complex Mediates End Protection at Double-Strand Breaks and Promotes PARP Inhibitor Sensitivity in BRCA1-Deficient Cells. Cell Reports, 2018, 23, 2107-2118.	2.9	110
21	53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature, 2018, 560, 122-127.	13.7	222
22	The shieldin complex mediates 53BP1-dependent DNA repair. Nature, 2018, 560, 117-121.	13.7	445
23	Haploid genetic screens identify genetic vulnerabilities to microtubuleâ€ŧargeting agents. Molecular Oncology, 2018, 12, 953-971.	2.1	12
24	Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell, 2018, 33, 1078-1093.e12.	7.7	238
25	EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nature Cell Biology, 2017, 19, 1371-1378.	4.6	257
26	Selected Alkylating Agents Can Overcome Drug Tolerance of G0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice. Clinical Cancer Research, 2017, 23, 7020-7033.	3.2	20
27	Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. Nature Communications, 2017, 8, 15981.	5.8	83
28	Photoacoustic staging of nodal metastases using SPIOs: Comparison between in vivo, inÂtoto and ex vivo imaging in a rat model. Biomedical Spectroscopy and Imaging, 2017, 5, 71-87.	1.2	1
29	Neoadjuvant olaparib targets hypoxia to improve radioresponse in a homologous recombination-proficient breast cancer model. Oncotarget, 2017, 8, 87638-87646.	0.8	10
30	Ritonavir inhibits intratumoral docetaxel metabolism and enhances docetaxel antitumor activity in an immunocompetent mouse breast cancer model. International Journal of Cancer, 2016, 138, 758-769.	2.3	26
31	The PARP Inhibitor AZD2461 Provides Insights into the Role of PARP3 Inhibition for Both Synthetic Lethality and Tolerability with Chemotherapy in Preclinical Models. Cancer Research, 2016, 76, 6084-6094.	0.4	73
32	Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016, 535, 382-387.	13.7	685
33	Genetic Dissection of Cancer Development, Therapy Response, and Resistance in Mouse Models of Breast Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 141-150.	2.0	10
34	HELB Is a Feedback Inhibitor of DNA End Resection. Molecular Cell, 2016, 61, 405-418.	4.5	119
35	Development of a Tumour Growth Inhibition Model to Elucidate the Effects of Ritonavir on Intratumoural Metabolism and Anti-tumour Effect of Docetaxel in a Mouse Model for Hereditary Breast Cancer. AAPS Journal, 2016, 18, 362-371.	2.2	4
36	BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1. Journal of Clinical Investigation, 2016, 126, 2903-2918.	3.9	105

SVEN ROTTENBERG

#	Article	IF	CITATIONS
37	Secretome proteomics reveals candidate non-invasive biomarkers of <i>BRCA1</i> deficiency in breast cancer. Oncotarget, 2016, 7, 63537-63548.	0.8	14
38	Subunit composition of <scp>VRAC</scp> channels determines substrate specificity and cellular resistance to <scp>P</scp> tâ€based antiâ€cancer drugs. EMBO Journal, 2015, 34, 2993-3008.	3.5	209
39	Real-Time In Vivo Characterization of Primary Liver Tumors With Diffuse Optical Spectroscopy During Percutaneous Needle Interventions. Investigative Radiology, 2015, 50, 443-448.	3.5	16
40	Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy. Journal of Translational Medicine, 2015, 13, 114.	1.8	17
41	BRCA2-Deficient Sarcomatoid Mammary Tumors Exhibit Multidrug Resistance. Cancer Research, 2015, 75, 732-741.	0.4	47
42	Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8409-8414.	3.3	106
43	CopywriteR: DNA copy number detection from off-target sequence data. Genome Biology, 2015, 16, 49.	3.8	183
44	REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature, 2015, 521, 541-544.	13.7	487
45	Minimal residual disease in cancer therapy – Small things make all the difference. Drug Resistance Updates, 2015, 21-22, 1-10.	6.5	34
46	PARP Inhibitor Resistance—What Is Beyond BRCA1 or BRCA2 Restoration?. Cancer Drug Discovery and Development, 2015, , 453-471.	0.2	0
47	Monitoring of Tumor Response to Cisplatin Using Optical Spectroscopy. Translational Oncology, 2014, 7, 230-239.	1.7	17
48	Loss of 53BP1 Causes PARP Inhibitor Resistance in <i>Brca1</i> -Mutated Mouse Mammary Tumors. Cancer Discovery, 2013, 3, 68-81.	7.7	428
49	Proteomics of Genetically Engineered Mouse Mammary Tumors Identifies Fatty Acid Metabolism Members as Potential Predictive Markers for Cisplatin Resistance. Molecular and Cellular Proteomics, 2013, 12, 1319-1334.	2.5	24
50	Intraâ€operative <i>ex vivo</i> photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. Journal of Biophotonics, 2013, 6, 493-504.	1.1	22
51	Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nature Communications, 2013, 4, 1908.	5.8	310
52	Identifying subgroup markers in heterogeneous populations. Nucleic Acids Research, 2013, 41, e200-e200.	6.5	21
53	Lack of ABCG2 Shortens Latency of BRCA1-Deficient Mammary Tumors and This Is Not Affected by Genistein or Resveratrol. Cancer Prevention Research, 2012, 5, 1053-1060.	0.7	12
54	Impact of Intertumoral Heterogeneity on Predicting Chemotherapy Response of BRCA1-Deficient Mammary Tumors. Cancer Research, 2012, 72, 2350-2361.	0.4	48

SVEN ROTTENBERG

#	Article	IF	CITATIONS
55	MEK inhibition as a strategy for targeting residual breast cancer cells with low DUSP4 expression. Breast Cancer Research, 2012, 14, 324.	2.2	13
56	Drug resistance in the mouse cancer clinic. Drug Resistance Updates, 2012, 15, 81-89.	6.5	33
57	Proteomics of Mouse BRCA1-deficient Mammary Tumors Identifies DNA Repair Proteins with Potential Diagnostic and Prognostic Value in Human Breast Cancer. Molecular and Cellular Proteomics, 2012, 11, M111.013334-1-M111.013334-19.	2.5	23
58	EZN-2208 (PEG-SN38) Overcomes ABCG2-Mediated Topotecan Resistance in BRCA1-Deficient Mouse Mammary Tumors. PLoS ONE, 2012, 7, e45248.	1.1	24
59	BRCA1 RING Function Is Essential for Tumor Suppression but Dispensable for Therapy Resistance. Cancer Cell, 2011, 20, 797-809.	7.7	228
60	Questioning the value of 99mTc-HYNIC-annexin V based response monitoring after docetaxel treatment in a mouse model for hereditary breast cancer. Applied Radiation and Isotopes, 2011, 69, 656-662.	0.7	16
61	Sensitivity and Acquired Resistance of BRCA1;p53-Deficient Mouse Mammary Tumors to the Topoisomerase I Inhibitor Topotecan. Cancer Research, 2010, 70, 1700-1710.	0.4	76
62	Tumor-initiating cells are not enriched in cisplatin-surviving BRCA1;p53-deficient mammary tumor cells in vivo. Cell Cycle, 2010, 9, 3804-3815.	1.3	24
63	6-Thioguanine Selectively Kills BRCA2-Defective Tumors and Overcomes PARP Inhibitor Resistance. Cancer Research, 2010, 70, 6268-6276.	0.4	102
64	Studying Drug Resistance Using Genetically Engineered Mouse Models for Breast Cancer. Methods in Molecular Biology, 2010, 596, 33-45.	0.4	9
65	Abstract A14: Lack of tumor eradication of chemotherapy-sensitive BRCA1;p53-deficient mouse mammary tumors. , 2010, , .		0
66	Moderate Increase in <i>Mdr1a/1b</i> Expression Causes <i>In vivo</i> Resistance to Doxorubicin in a Mouse Model for Hereditary Breast Cancer. Cancer Research, 2009, 69, 6396-6404.	0.4	88
67	Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 266-280.	3.3	28
68	Noninvasive functional imaging of P-glycoprotein-mediated doxorubicin resistance in a mouse model of hereditary breast cancer to predict response, and assign P-gp inhibitor sensitivity. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 406-412.	3.3	19
69	Modeling therapy resistance in genetically engineered mouse cancer models. Drug Resistance Updates, 2008, 11, 51-60.	6.5	29
70	High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17079-17084.	3.3	854
71	How do real tumors become resistant to cisplatin?. Cell Cycle, 2008, 7, 1353-1359.	1.3	185
72	What Makes Tumors Multidrug Resistant?. Cell Cycle, 2007, 6, 2782-2787.	1.3	97

#	Article	IF	CITATIONS
73	Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12117-12122.	3.3	279
74	Further Evidence for BRCA1 Communication with the Inactive X Chromosome. Cell, 2007, 128, 991-1002.	13.5	72
75	Cancer cell death by programmed necrosis?. Drug Resistance Updates, 2004, 7, 321-324.	6.5	33
76	Theileria-induced leukocyte transformation. Current Opinion in Microbiology, 2003, 6, 377-382.	2.3	66
77	Hijacking of Host Cell IKK Signalosomes by the Transforming Parasite Theileria. Science, 2002, 298, 1033-1036.	6.0	126
78	Characterization of the bovine lκB kinases (IKK)α and IKKβ , the regulatory subunit NEMO and their substrate lκBα. Gene, 2002, 299, 293-300.	1.0	14
79	Inhibition of apoptosis by intracellular protozoan parasites. International Journal for Parasitology, 2001, 31, 1166-1176.	1.3	161
80	Studying cancer drug resistance using BRCA-deficient mouse mammary tumor organoids. Protocol Exchange, 0, , .	0.3	1