Piotr Przybysz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8160024/publications.pdf Version: 2024-02-01

DIATO DOZVRVOZ

#	Article	lF	CITATIONS
1	Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Science and Technology, 2017, 51, 873-885.	1.4	49
2	Contribution of Hydrogen Bonds to Paper Strength Properties. PLoS ONE, 2016, 11, e0155809.	1.1	41
3	Influence of lignin content in cellulose pulp on paper durability. Scientific Reports, 2020, 10, 19998.	1.6	35
4	Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties. PLoS ONE, 2016, 11, e0161575.	1.1	28
5	Production of glucose-rich enzymatic hydrolysates from cellulosic pulps. Cellulose, 2015, 22, 663-674.	2.4	27
6	Yield of Pulp, Dimensional Properties of Fibers, and Properties of Paper Produced from Fast Growing Trees and Grasses. BioResources, 2017, 13, .	0.5	26
7	The utility of selected kraft hardwood and softwood pulps for fuel ethanol production. Industrial Crops and Products, 2017, 108, 824-830.	2.5	25
8	The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose. Energies, 2019, 12, 2952.	1.6	17
9	Comparison of digestibility of wood pulps produced by the sulfate and TMP methods and woodchips of various botanical origins and sizes. Cellulose, 2015, 22, 2737-2747.	2.4	16
10	Hydrogen production from biomass woodchips using Ni/CaO–ZrO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 97-107.	0.8	14
11	Effect of xylanases on refining process and kraft pulp properties. Cellulose, 2018, 25, 1319-1328.	2.4	13
12	Evaluation of pine kraft cellulosic pulps and fines from papermaking as potential feedstocks for biofuel production. Cellulose, 2016, 23, 649-659.	2.4	11
13	Influences of Fiber and Pulp Properties on Papermaking Ability of Cellulosic Pulps Produced from Alternative Fibrous Raw Materials. Journal of Natural Fibers, 2021, 18, 1751-1761.	1.7	10
14	Productivity, Growth Patterns, and Cellulosic Pulp Properties of Hybrid Aspen Clones. Forests, 2019, 10, 450.	0.9	9
15	Production of Sugar Feedstocks for Fermentation Processes from Selected Fast Growing Grasses. Energies, 2019, 12, 3129.	1.6	5
16	Paper material containing Ag cations immobilised in faujasite: synthesis, characterisation and antibacterial effects. Cellulose, 2018, 25, 1353-1364.	2.4	3
17	Barrier Dispersion-Based Coatings Containing Natural and Paraffin Waxes. Molecules, 2022, 27, 930.	1.7	3
18	A New Device for Characterisation of the Drainage Kinetics of Fibrous Suspensions Under Gravity. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2014, 35, 409-420.	0.7	1

#	Article	IF	CITATIONS
19	Gravity Drainage Kinetics of Papermaking Fibrous Suspensions. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2014, 35, 421-434.	0.7	0