Booki Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8159827/publications.pdf

Version: 2024-02-01

88 papers

6,831 citations

39 h-index 81 g-index

90 all docs

90 docs citations

90 times ranked 4607 citing authors

#	Article	IF	Citations
1	A Concise Review on the Recent Developments in the Internet of Things (IoT)-Based Smart Aquaculture Practices. Reviews in Fisheries Science and Aquaculture, 2023, 31, 103-118.	9.1	9
2	Porous reduced-graphene oxide supported hollow titania (rGO/TiO2) as an effective catalyst for upgrading electromethanogenesis. International Journal of Hydrogen Energy, 2022, 47, 1121-1131.	7.1	3
3	Application of bioelectrochemical systems to regulate and accelerate the anaerobic digestion processes. Chemosphere, 2022, 287, 132299.	8.2	10
4	A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. Bioresource Technology, 2022, 347, 126589.	9.6	18
5	Enhancing biogas and electricity recovery using an iron-manganese oxide catalyzed bioanode in an integrated submersible microbial fuel cell-anaerobic digester. Sustainable Energy Technologies and Assessments, 2022, 52, 102276.	2.7	3
6	Accelerating anaerobic digestion process with novel single chamber microbial electrochemical systems with baffle. Bioresource Technology, 2022, 359, 127474.	9.6	11
7	Fundamentals and recent progress in bioelectrochemical system-assisted biohythane production. Bioresource Technology, 2022, 361, 127641.	9.6	8
8	A mesoporous silica-supported CeO ₂ /cellulose cathode catalyst for efficient bioelectrochemical reduction of inorganic carbon to biofuels. Reaction Chemistry and Engineering, 2021, 6, 1993-2001.	3.7	6
9	Influence of Trace Metals concentration on Methane generation using Microbial Electrochemical Systems. Process Biochemistry, 2021, 102, 213-219.	3.7	4
10	Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO2. Science of the Total Environment, 2021, 768, 144477.	8.0	29
11	Microbial electrosynthesis of multi-carbon volatile fatty acids under the influence of different imposed potentials. Sustainable Energy Technologies and Assessments, 2021, 45, 101118.	2.7	7
12	MnO2/reduced graphene oxide nanohybrids as a cathode catalyst for the microbial reduction of CO2 to acetate and isobutyric acid. Sustainable Energy Technologies and Assessments, 2021, 45, 101114.	2.7	12
13	Ginkgo leaves extract-assisted synthesis of ZnO/CuO nanocrystals for efficient UV-induced photodegradation of organic dyes and antibacterial activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 17154-17169.	2.2	13
14	Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems. Bioresource Technology, 2020, 296, 122265.	9.6	52
15	Enhancing electrochemical degradation of phenol at optimum pH condition with a Pt/Ti anode electrode. Environmental Technology (United Kingdom), 2020, 41, 3248-3259.	2.2	19
16	Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresource Technology, 2020, 296, 122315.	9.6	53
17	Concomitant use of Azolla derived bioelectrode as anode and hydrolysate as substrate for microbial fuel cell and electro-fermentation applications. Science of the Total Environment, 2020, 707, 135851.	8.0	23
18	Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. Bioresource Technology, 2020, 300, 122624.	9.6	26

#	Article	IF	CITATIONS
19	Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell. Renewable Energy, 2020, 149, 424-434.	8.9	32
20	Specific enrichment of different Geobacter sp. in anode biofilm by varying interspatial distance of electrodes in air-cathode microbial fuel cell (MFC). Electrochimica Acta, 2020, 331, 135388.	5.2	45
21	Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion. Chemical Engineering Journal, 2020, 392, 123689.	12.7	93
22	Influence of Humidity on Performance of Single Chamber Air-Cathode Microbial Fuel Cells with Different Separators. Processes, 2020, 8, 861.	2.8	5
23	Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. Bioresource Technology, 2020, 316, 123928.	9.6	19
24	Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors, 2020, 10, 151.	4.7	72
25	Bioelectrosynthetic Conversion of CO2 Using Different Redox Mediators: Electron and Carbon Balances in a Bioelectrochemical System. Energies, 2020, 13, 2572.	3.1	27
26	Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Science of the Total Environment, 2020, 723, 138054.	8.0	42
27	Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems. Chemical Engineering Journal, 2020, 393, 124613.	12.7	40
28	Electrochemical treatment of leachate containing highly concentrated phenol and ammonia using a Pt/Ti anode at different current densities. Environmental Technology and Innovation, 2020, 18, 100632.	6.1	23
29	Continuous autotrophic denitrification process for treating ammonium-rich leachate wastewater in bioelectrochemical denitrification system (BEDS). Bioelectrochemistry, 2019, 130, 107340.	4.6	16
30	Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. Bioresource Technology, 2019, 292, 122010.	9.6	68
31	Enhancing bio-alcohol production from volatile fatty acids by suppressing methanogenic activity in single chamber microbial electrosynthesis cells (SCMECs). Bioresource Technology Reports, 2019, 7, 100292.	2.7	26
32	Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnology Advances, 2019, 37, 107420.	11.7	71
33	Enhanced methane fermentation of municipal sewage sludge by microbial electrochemical systems integrated with anaerobic digestion. International Journal of Hydrogen Energy, 2019, 44, 30357-30366.	7.1	27
34	Highly Porous Fe $<$ sub $><$ i $>xi>sub>MnO<sub><i>yi>sub> Microsphere as an Efficient Cathode Catalyst for Microbial Electrosynthesis of Volatile Fatty Acids from CO<sub>2sub>. ChemElectroChem, 2019, 6, 5973-5983.$	3.4	32
35	<i>Azadirachta indica</i> leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustainable Energy and Fuels, 2019, 3, 3430-3440.	4.9	41
36	Enhanced methane production from acetate intermediate by bioelectrochemical anaerobic digestion at optimal applied voltages. Biomass and Bioenergy, 2019, 127, 105261.	5.7	45

#	Article	IF	CITATIONS
37	Comparison on efficiency of electrochemical phenol oxidation in two different supporting electrolytes (NaCl and Na2SO4) using Pt/Ti electrode. Environmental Technology and Innovation, 2019, 15, 100382.	6.1	31
38	Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber. Bioprocess and Biosystems Engineering, 2019, 42, 1247-1254.	3.4	9
39	Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresource Technology, 2019, 284, 424-429.	9.6	131
40	Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions. Bioresource Technology, 2019, 284, 161-167.	9.6	45
41	Biological removal of H2S gas in a semi-pilot scale biotrickling filter: Optimization of various parameters for efficient removal at high loading rates and low pH conditions. Bioresource Technology, 2019, 285, 121328.	9.6	24
42	Microbial Electrosynthesis of Bioalcohols through Reduction of High Concentrations of Volatile Fatty Acids. Energy & Samp; Fuels, 2019, 33, 4264-4271.	5.1	28
43	Integration of submersible microbial fuel cell in anaerobic digestion for enhanced production of methane and current at varying glucose levels. International Journal of Hydrogen Energy, 2019, 44, 7574-7582.	7.1	31
44	In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations. International Journal of Hydrogen Energy, 2019, 44, 2380-2389.	7.1	32
45	Algal Biocathodes. , 2019, , 525-547.		4
46	The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells. Environmental Technology (United Kingdom), 2018, 39, 288-297.	2.2	30
47	Physicochemical Parameters Governing Microbial Fuel Cell Performance. , 2018, , 189-208.		1
48	Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas., 2018,, 283-302.		2
49	Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format. Bioresource Technology, 2018, 269, 408-416.	9.6	29
50	Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment. Bioresource Technology, 2017, 233, 176-183.	9.6	54
51	Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. International Journal of Hydrogen Energy, 2017, 42, 29433-29442.	7.1	76
52	Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess and Biosystems Engineering, 2017, 40, 1851-1858.	3.4	16
53	Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresource Technology, 2017, 245, 826-832.	9.6	128
54	Urea removal coupled with enhanced electricity generation in single-chambered microbial fuel cells. Environmental Science and Pollution Research, 2017, 24, 20401-20408.	5.3	24

#	Article	IF	Citations
55	Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell. International Journal of Hydrogen Energy, 2016, 41, 20606-20614.	7.1	19
56	Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. Environmental Science and Pollution Research, 2016, 23, 1091-1099.	5.3	46
57	Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03. Environmental Science and Pollution Research, 2015, 22, 18839-18848.	5.3	3
58	Enhanced performance of an air–cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor. Bioresource Technology, 2015, 195, 210-216.	9.6	44
59	Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly. Bioelectrochemistry, 2015, 106, 263-267.	4.6	35
60	Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Research, 2015, 87, 137-144.	11.3	56
61	Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell. Journal of Microbiology and Biotechnology, 2015, 25, 1114-1118.	2.1	5
62	Bacterial communities in a bioelectrochemical denitrification system: The effects of supplemental electron acceptors. Water Research, 2014, 51, 25-36.	11.3	144
63	Tracking the spectroscopic and chromatographic changes of algal derived organic matter in a microbial fuel cell. Environmental Science and Pollution Research, 2014, 21, 2230-2239.	5.3	20
64	Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Frontiers of Environmental Science and Engineering, 2014, 8, 784-791.	6.0	83
65	Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 2014, 172, 97-103.	9.6	154
66	Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess and Biosystems Engineering, 2014, 37, 2453-2461.	3.4	48
67	Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochimica Acta, 2014, 132, 434-440.	5. 2	91
68	Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. International Journal of Hydrogen Energy, 2014, 39, 10275-10283.	7.1	125
69	Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess and Biosystems Engineering, 2013, 36, 635-642.	3.4	31
70	Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess and Biosystems Engineering, 2013, 36, 231-238.	3.4	75
71	Enrichment of Clostridia during the operation of an external-powered bio-electrochemical denitrification system. Process Biochemistry, 2013, 48, 306-311.	3.7	63
72	Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Bioresource Technology, 2012, 118, 412-417.	9.6	28

#	Article	IF	CITATIONS
73	A systematic model calibration methodology based on multiple errors minimization method for the optimal parameter estimation of ASM1. Korean Journal of Chemical Engineering, 2012, 29, 291-303.	2.7	8
74	Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy and Environmental Science, 2011, 4, 3513.	30.8	82
75	In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry, 2011, 81, 99-103.	4.6	93
76	Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes. Applied Biochemistry and Biotechnology, 2011, 164, 464-474.	2.9	71
77	Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresource Technology, 2011, 102, 1166-1173.	9.6	159
78	Adsorption Studies for the Removal of Nitrate Using Modified Lignite Granular Activated Carbon. Separation Science and Technology, 2011, 46, 2575-2584.	2.5	54
79	Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells. Applied and Environmental Microbiology, 2009, 75, 3389-3395.	3.1	174
80	Innovative microbial fuel cell for electricity production from anaerobic reactors. Journal of Power Sources, 2008, 180, 641-647.	7.8	93
81	Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology Letters, 2008, 30, 1213-1218.	2.2	148
82	Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbiology and Biotechnology, 2005, 68, 23-30.	3.6	444
83	Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005, 39, 4961-4968.	11.3	749
84	Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 2005, 39, 1675-1686.	11.3	524
85	Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science & Eamp; Technology, 2004, 38, 5809-5814.	10.0	766
86	Perchlorate removal in sand and plastic media bioreactors. Water Research, 2004, 38, 47-60.	11.3	90
87	Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells. Environmental Science & Environmental Scien	10.0	570
88	A Simplified Headspace Biochemical Oxygen Demand Test Protocol Based on Oxygen Measurements Using a Fiber Optic Probe. Water Environment Research, 2004, 76, 29-36.	2.7	5