Yu-Sin Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8159753/publications.pdf Version: 2024-02-01

YU-SIN IANC

#	Article	IF	CITATIONS
1	A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2, 18-33.	16.1	394
2	Bioâ€based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 2012, 109, 2437-2459.	1.7	329
3	Butanol production from renewable biomass by clostridia. Bioresource Technology, 2012, 123, 653-663.	4.8	240
4	Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2016, 42, 54-66.	3.3	229
5	Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum. MBio, 2012, 3, .	1.8	220
6	Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Applied and Environmental Microbiology, 2012, 78, 1416-1423.	1.4	213
7	Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. Journal of Colloid and Interface Science, 2003, 261, 238-243.	5.0	178
8	Pore Structure and Surface Properties of Chemically Modified Activated Carbons for Adsorption Mechanism and Rate of Cr(VI). Journal of Colloid and Interface Science, 2002, 249, 458-463.	5.0	177
9	Systems metabolic engineering for chemicals and materials. Trends in Biotechnology, 2011, 29, 370-378.	4.9	173
10	Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 2012, 30, 989-1000.	6.0	143
11	Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal, 2012, 7, 186-198.	1.8	138
12	Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Applied Microbiology and Biotechnology, 2012, 93, 1485-1494.	1.7	129
13	Metabolic engineering of <i>Clostridium acetobutylicum</i> M5 for highly selective butanol production. Biotechnology Journal, 2009, 4, 1432-1440.	1.8	117
14	Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. Journal of Colloid and Interface Science, 2003, 260, 259-264.	5.0	108
15	One hundred years of clostridial butanol fermentation. FEMS Microbiology Letters, 2016, 363, fnw001.	0.7	93
16	Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced Phenolic Resin Matrix Composites. Journal of Colloid and Interface Science, 2001, 237, 91-97.	5.0	86
17	Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metabolic Engineering, 2014, 23, 165-174.	3.6	83
18	Interlaminar and Ductile Characteristics of Carbon Fibers-Reinforced Plastics Produced by Nanoscaled Electroless Nickel Plating on Carbon Fiber Surfaces. Journal of Colloid and Interface Science, 2002, 245, 383-390.	5.0	81

Yu-Sin Jang

#	Article	IF	CITATIONS
19	Acetone–butanol–ethanol production with high productivity using <i>Clostridium acetobutylicum</i> BKM19. Biotechnology and Bioengineering, 2013, 110, 1646-1653.	1.7	78
20	Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses. MBio, 2016, 7, .	1.8	72
21	Metabolic engineering of <i>Clostridium acetobutylicum</i> for the enhanced production of isopropanolâ€butanolâ€ethanol fuel mixture. Biotechnology Progress, 2013, 29, 1083-1088.	1.3	69
22	<i>Escherichia coli</i> W as a new platform strain for the enhanced production of <scp>L</scp> â€Valine by systems metabolic engineering. Biotechnology and Bioengineering, 2011, 108, 1140-1147.	1.7	63
23	Metabolic Engineering of Microorganisms for the Production of Higher Alcohols. MBio, 2014, 5, e01524-14.	1.8	61
24	Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nature Communications, 2015, 6, 8410.	5.8	54
25	Metabolic engineering of clostridia for the production of chemicals. Biofuels, Bioproducts and Biorefining, 2015, 9, 211-225.	1.9	44
26	From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Applied Microbiology and Biotechnology, 2008, 79, 11-22.	1.7	43
27	Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Applied Microbiology and Biotechnology, 2013, 97, 9355-9363.	1.7	41
28	X-ray diffraction and X-ray photoelectron spectroscopy studies of Ni–P deposited onto carbon fiber surfaces: impact properties of a carbon-fiber-reinforced matrix. Journal of Colloid and Interface Science, 2003, 263, 170-176.	5.0	37
29	Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose. Frontiers in Bioengineering and Biotechnology, 2019, 7, 351.	2.0	37
30	Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Applied Microbiology and Biotechnology, 2018, 102, 8319-8327.	1.7	31
31	Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology, 2014, 98, 5105-5115.	1.7	29
32	Construction and Characterization of Shuttle Vectors for Succinic Acid-Producing Rumen Bacteria. Applied and Environmental Microbiology, 2007, 73, 5411-5420.	1.4	26
33	Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. FEMS Microbiology Letters, 2010, 309, no-no.	0.7	21
34	Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production. MBio, 2019, 10, .	1.8	18
35	Enzymatic defluorination of fluorinated compounds. Applied Biological Chemistry, 2019, 62, .	0.7	18
36	Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum. Journal of Microbiology, 2012, 50, 1063-1066.	1.3	17

Yu-Sin Jang

	/ introle	п	CHATIONS
37	Microbial production of butyl butyrate, a flavor and fragrance compound. Applied Microbiology and Biotechnology, 2019, 103, 2079-2086.	1.7	16
38	Recent Advances in Biobutanol Production. Industrial Biotechnology, 2015, 11, 316-321.	0.5	15
39	Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop. Journal of Biotechnology, 2016, 230, 40-43.	1.9	13
40	Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon. Applied Microbiology and Biotechnology, 2019, 103, 8283-8292.	1.7	12
41	Chlorfenapyr Residue in Sweet Persimmon from Farm to Table. Journal of Food Protection, 2019, 82, 810-814.	0.8	12
42	Synthetic Biology Tools for Genome and Transcriptome Engineering of Solventogenic Clostridium. Frontiers in Bioengineering and Biotechnology, 2020, 8, 282.	2.0	11
43	Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 266-271.	1.4	10
44	Effects of nutritional enrichment on acid production from degenerated (non-solventogenic) Clostridium acetobutylicum strain M5. Applied Biological Chemistry, 2018, 61, 469-472.	0.7	10
45	Genome analysis of a hyper acetoneâ€butanolâ€ethanol (ABE) producing <i>Clostridium acetobutylicum</i> BKM19. Biotechnology Journal, 2017, 12, 1600457.	1.8	9
46	Characterization of an organic solvent-tolerant polysaccharide lyase from Microbulbifer thermotolerans DAU221. International Journal of Biological Macromolecules, 2021, 169, 452-462.	3.6	8
47	Control of the galactose-to-glucose consumption ratio in co-fermentation using engineered Escherichia coli strains. Scientific Reports, 2020, 10, 12132.	1.6	5
48	Systems Metabolic Engineering of Escherichia coli for Chemicals, Materials, Biofuels, and Pharmaceuticals. , 2012, , 117-149.		4
49	Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition. Journal of Applied Biological Chemistry, 2021, 64, 433-438.	0.2	4
50	Clostridium acetobutylicum atpG-Knockdown Mutants Increase Extracellular pH in Batch Cultures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 754250.	2.0	2
51	Metabolic engineering of the genus Clostridium for butanol production. Korean Journal of Microbiology, 2016, 52, 391-397.	0.2	2
52	Effect of deregulation of repressor-specific carbon catabolite repression on carbon source consumption in Escherichia coli. Applied Biological Chemistry, 2021, 64, .	0.7	1
53	C1 Gas Refinery. , 2018, , 1-16.		1
54	Metabolic Engineering Strategies of Clostridia for Butyric Acid Production. KSBB Journal, 2017, 32, 169-173.	0.1	0

#	Article	IF	CITATIONS
55	Recent advances on bio-alcohol production from syngas using microorganisms. Journal of Applied Biological Chemistry, 2017, 60, 333-338.	0.2	0