Karunakara Moorthy Boopathi

List of Publications by Citations

Source:

https://exaly.com/author-pdf/8159231/karunakara-moorthy-boopathi-publications-by-citations.pdf **Version:** 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 1,383 21 32 g-index

32 1,640 10.8 4.47 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
32	Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1591-1597	13	158
31	Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. Journal of Materials Chemistry A, 2017 , 5, 20843-20850	13	118
30	Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals. <i>Advanced Materials</i> , 2015 , 27, 7229-35	24	105
29	High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors. <i>Nanoscale</i> , 2016 , 8, 2284-92	7.7	95
28	Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of CsSbI. <i>ACS Applied Materials & District Applied & District</i>	9.5	84
27	A high performance electrochemical sensor for acetaminophen based on a rGO P EDOT nanotube composite modified electrode. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7229-7237	13	82
26	Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells. <i>ACS Applied Materials & Discounty (ACS Applied Materials & Discounty)</i>	9.5	76
25	Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries. <i>ACS Nano</i> , 2017 , 11, 12436-12445	16.7	68
24	Bifunctional separator as a polysulfide mediator for highly stable LiB batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9661-9669	13	67
23	Solution-processable bismuth iodide nanosheets as hole transport layers for organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 121, 35-41	6.4	50
22	Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9257-9263	13	45
21	Lead-Free Antimony-Based Light-Emitting Diodes through the Vapor-Anion-Exchange Method. <i>ACS Applied Materials & Diodes and Materials & Diodes and Materials & Diodes and Materials & Diodes and Diode</i>	9.5	42
20	Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11382-11390	13	37
19	Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells. <i>Nano Energy</i> , 2018 , 45, 330-336	17.1	36
18	Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 32635-32642	9.5	34
17	High electrocatalytic performance of platinum and manganese dioxide nanoparticle decorated reduced graphene oxide sheets for methanol electro-oxidation. <i>RSC Advances</i> , 2014 , 4, 41387-41397	3.7	31
16	A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7114-7122	13	26

LIST OF PUBLICATIONS

15	A lithium passivated MoO nanobelt decorated polypropylene separator for fast-charging long-life Li-S batteries. <i>Nanoscale</i> , 2019 , 11, 2892-2900	7.7	24
14	Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. <i>Reports on Progress in Physics</i> , 2020 , 83, 086502	14.4	23
13	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 17973-17984	9.5	23
12	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. <i>ACS Energy Letters</i> , 2020 , 5, 642-649	20.1	21
11	Influence of In doping on the thermoelectric properties of an AgSbTe2 compound with enhanced figure of merit. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2839	13	20
10	Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. <i>ACS Photonics</i> , 2017 , 4, 146-155	6.3	18
9	A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells. <i>RSC Advances</i> , 2014 , 4, 9401	3.7	18
8	Bilayer polymer solar cells prepared with transfer printing of active layers from controlled swelling/de-swelling of PDMS. <i>Nano Energy</i> , 2019 , 63, 103826	17.1	16
7	UV- and NIR-Protective Semitransparent Smart Windows Based on Metal Halide Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 632-637	6.1	15
6	Mitigating Metal Dendrite Formation in Lithium-Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces. <i>ACS Applied Materials & Description of the Property of the </i>	9.5	12
5	Synthesis of fluorinated benzotriazole (BTZ)- and benzodithiophene (BDT)-based low-bandgap conjugated polymers for solar cell applications. <i>Dyes and Pigments</i> , 2017 , 139, 349-360	4.6	11
4	NbSe interlayers decrease interfacial recombination in BiI3-based hybrid solar cells. <i>FlatChem</i> , 2017 , 5, 18-24	5.1	9
3	Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods. <i>Optics Express</i> , 2016 , 24, 17910-5	3.3	8
2	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Single Crystals for Improved Structural Stability and Enhanced Photodetection. <i>Advanced Materials</i> , 2021 , e2106160	24	6
1	An Insight into the Electrochemical Activity of Al-doped V2O3. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 100514	3.9	5