List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8158922/publications.pdf Version: 2024-02-01

LIN-LE 7H

#	Article	IF	CITATIONS
1	Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Research, 2022, 15, 361-367.	5.8	18
2	Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter, 2022, 5, 1263-1276.	5.0	15
3	Electrifying Schiff-based networks as model catalysts towards deeply understanding the crucial role of sp2-carbon in nitrogen-doped carbocatalyst for oxygen reduction reaction. Applied Surface Science, 2022, 599, 153961.	3.1	2
4	Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon, 2021, 171, 931-937.	5.4	8
5	The Different Roles of Cobalt and Manganese in Metalâ€Organic Frameworks for Supercapacitors. Advanced Materials Technologies, 2021, 6, 2000941.	3.0	33
6	Molecular Orientations at Buried Conducting Polymer/Graphene Interfaces. Macromolecules, 2021, 54, 4050-4060.	2.2	6
7	Scalable synthesis of silicon nanoplate-decorated graphite for advanced lithium-ion battery anodes. Nanoscale, 2021, 13, 2820-2824.	2.8	12
8	Covalently encapsulating sulfur chains into carbon-rich nanomaterials towards high-capacity and high-rate sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 24460-24471.	5.2	6
9	A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale, 2021, 13, 19210-19217.	2.8	6
10	Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826.	5.8	193
11	Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17558-17567.	5.2	64
12	Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Applied Catalysis B: Environmental, 2020, 276, 119146.	10.8	108
13	N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy, 2019, 64, 103879.	8.2	110
14	Band Structure Engineering of Schiffâ€Base Microporous Organic Polymers for Enhanced Visibleâ€Light Photocatalytic Performance. Small, 2019, 15, e1900244.	5.2	28
15	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 2019, 66, 104096.	8.2	79
16	Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. ACS Nano, 2019, 13, 2307-2315.	7.3	115
17	Chemical tailoring of one-dimensional polypyrene nanocapsules at a molecular level: towards ideal sulfur hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 2009-2014.	5.2	10
18	Ultrafast microwave reduction process for high-quality graphene foam with outstanding electromagnetic interference shielding and good adsorption capacity. FlatChem, 2019, 17, 100117.	2.8	6

#	Article	IF	CITATIONS
19	Electrode Design from "Internal―to "External―for High Stability Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14142-14149.	4.0	32
20	A hierarchical layering design for stable, self-restrained and high volumetric binder-free lithium storage. Nanoscale, 2019, 11, 21728-21732.	2.8	8
21	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
22	Dimensionally Designed Carbon–Silicon Hybrids for Lithium Storage. Advanced Functional Materials, 2019, 29, 1806061.	7.8	140
23	lonothermal strategy towards template-free hierarchical porous carbons for supercapacitive energy storage. Carbon, 2019, 143, 487-493.	5.4	24
24	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	11.1	74
25	Grapheneâ€Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019, 3, 1800199.	4.6	135
26	Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018, 47, 3189-3216.	18.7	297
27	Nitrogenâ€Enriched Carbon/CNT Composites Based on Schiffâ€Base Networks: Ultrahigh N Content and Enhanced Lithium Storage Properties. Small, 2018, 14, e1703569.	5.2	31
28	A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018, 49, 179-185.	8.2	138
29	A facile Schiff base chemical approach: towards molecular-scale engineering of N-C interface for high performance lithium-sulfur batteries. Nano Energy, 2018, 46, 365-371.	8.2	32
30	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	5.8	227
31	A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams. Nanoscale, 2018, 10, 4675-4679.	2.8	36
32	Controllable growth of SnS ₂ nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A, 2018, 6, 1462-1472.	5.2	117
33	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	2.8	73
34	Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A, 2018, 6, 20254-20266.	5.2	110
35	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	2.8	15
36	Scallopâ€Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes. Small, 2018, 14, e1800752.	5.2	27

#	Article	IF	CITATIONS
37	Fabrication of the reduced preoxidized graphene-based nanofiltration membranes with tunable porosity and good performance. RSC Advances, 2017, 7, 2544-2549.	1.7	35
38	Structure controllable carbon matrix derived from benzene-constructed porous organic polymers for high-performance Li-S batteries. Carbon, 2017, 116, 633-639.	5.4	16
39	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	2.2	206
40	Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Metals, 2017, 36, 418-424.	3.6	30
41	A Facile Reduction Method for Rollâ€ŧoâ€Roll Production of High Performance Grapheneâ€Based Transparent Conductive Films. Advanced Materials, 2017, 29, 1605028.	11.1	70
42	Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS Nano, 2017, 11, 7476-7484.	7.3	132
43	Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption, 2016, 22, 1043-1050.	1.4	15
44	All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale, 2016, 8, 9146-9150.	2.8	97
45	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
46	Carbonâ€Networkâ€Integrated SnSiO <i>_x</i> ₊₂ Nanofiber Sheathed by Ultrathin Graphitic Carbon for Highly Reversible Lithium Storage. Advanced Energy Materials, 2016, 6, 1502495.	10.2	18
47	Encapsulating V ₂ O ₅ into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy and Environmental Science, 2016, 9, 906-911.	15.6	162
48	Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy, 2016, 22, 232-240.	8.2	136
49	Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. Journal of Materials Chemistry A, 2016, 4, 362-367.	5.2	25
50	Freestanding carbon-coated CNT/Sn(O ₂) coaxial sponges with enhanced lithium-ion storage capability. Nanoscale, 2015, 7, 20380-20385.	2.8	20
51	Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12, 141-151.	8.2	540
52	Approaching the Downsizing Limit of Silicon for Surface ontrolled Lithium Storage. Advanced Materials, 2015, 27, 1526-1532.	11.1	110
53	Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 3190-3195.	11.1	167
54	Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. Journal of Materials Chemistry A, 2015, 3, 24422-24427.	5.2	91

#	Article	IF	CITATIONS
55	High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. Nano Letters, 2015, 15, 6222-6228.	4.5	173
56	Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. Journal of Materials Chemistry A, 2015, 3, 494-498.	5.2	26
57	Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices. Carbon, 2015, 81, 232-238.	5.4	91
58	Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137, 219-225.	6.6	390
59	Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy and Environmental Science, 2015, 8, 456-477.	15.6	243
60	A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films. Journal of Materials Chemistry A, 2014, 2, 10969-10973.	5.2	31
61	Rational design of MoS ₂ @graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy and Environmental Science, 2014, 7, 3320-3325.	15.6	218
62	A novel SnS ₂ @graphene nanocable network for high-performance lithium storage. RSC Advances, 2014, 4, 23372-23376.	1.7	44
63	Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135.	5.2	35
64	Managing voids of Si anodes in lithium ion batteries. Nanoscale, 2013, 5, 8864.	2.8	52
65	High Volumetric Capacity Silicon-Based Lithium Battery Anodes by Nanoscale System Engineering. Nano Letters, 2013, 13, 5578-5584.	4.5	170
66	One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes. Nanoscale, 2013, 5, 1470.	2.8	80
67	Reduced Graphene Oxide Nanoribbon Networks: A Novel Approach towards Scalable Fabrication of Transparent Conductive Films. Small, 2013, 9, 820-824.	5.2	26
68	Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. ACS Nano, 2013, 7, 1437-1445.	7.3	392
69	Pyrolyzed Bacterial Cellulose: A Versatile Support for Lithium Ion Battery Anode Materials. Small, 2013, 9, 2399-2404.	5.2	158
70	Contactâ€Engineered and Voidâ€Involved Silicon/Carbon Nanohybrids as Lithiumâ€Ionâ€Battery Anodes. Advanced Materials, 2013, 25, 3560-3565.	11.1	227
71	Carbonaceous Electrode Materials for Supercapacitors. Advanced Materials, 2013, 25, 3899-3904.	11.1	625
72	Covalently Stabilized Pd Clusters in Microporous Polyphenylene: An Efficient Catalyst for Suzuki Reactions Under Aerobic Conditions. Small, 2013, 9, 2460-2465.	5.2	20

#	Article	IF	CITATIONS
73	Intertwined Network of Si/C Nanocables and Carbon Nanotubes as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2013, 5, 6467-6472.	4.0	50
74	Enhanced Transparent Conductive Properties of Graphene/Carbon Nano-Composite Films. Journal of Nanoscience and Nanotechnology, 2013, 13, 942-945.	0.9	2
75	Two dimensional graphene–SnS ₂ hybrids with superior rate capability for lithium ion storage. Energy and Environmental Science, 2012, 5, 5226-5230.	15.6	386
76	The dimensionality of Sn anodes in Li-ion batteries. Materials Today, 2012, 15, 544-552.	8.3	222
77	Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy and Environmental Science, 2012, 5, 9747.	15.6	171
78	Chemical Approaches toward Grapheneâ€Based Nanomaterials and their Applications in Energyâ€Related Areas. Small, 2012, 8, 630-646.	5.2	368
79	Highâ€Efficiency and Roomâ€Temperature Reduction of Graphene Oxide: A Facile Green Approach Towards Flexible Graphene Films. Small, 2012, 8, 1180-1184.	5.2	36
80	Advanced Asymmetric Supercapacitors Based on Ni(OH) ₂ /Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	7.8	1,855
81	Rod oating: Towards Largeâ€Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Advanced Materials, 2012, 24, 2874-2878.	11.1	285
82	Graphene onfined Sn Nanosheets with Enhanced Lithium Storage Capability. Advanced Materials, 2012, 24, 3538-3543.	11.1	271
83	Templateâ€Directed Synthesis of Pillaredâ€Porous Carbon Nanosheet Architectures: Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 419-424.	10.2	267
84	Reduced Graphene Oxideâ€Mediated Growth of Uniform Tin ore/Carbonâ€Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties. Advanced Materials, 2012, 24, 1405-1409.	11.1	182
85	Asymmetric Supercapacitors Based on Graphene/MnO ₂ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011, 21, 2366-2375.	7.8	1,827
86	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	7.8	172
87	A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity. Chemical Communications, 2009, , 809-811.	2.2	61
88	Transparent Carbon Films as Electrodes in Organic Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 2990-2992.	7.2	598
89	Two-Dimensional Graphene Nanoribbons. Journal of the American Chemical Society, 2008, 130, 4216-4217.	6.6	695
90	A bottom-up approach from molecular nanographenes to unconventional carbon materials. Journal of Materials Chemistry, 2008, 18, 1472.	6.7	330

#	Article	IF	CITATIONS
91	Self-Assembly of Positively Charged Discotic PAHs: From Nanofibers to Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 5417-5420.	7.2	133
92	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie - International Edition, 2005, 44, 2120-2123.	7.2	111