
Alexander Kornienko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8158655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-component assembly of stabilized fluorescent isoindoles. RSC Advances, 2022, 12, 6947-6950.	3.6	3
2	Design and Synthesis of C-1 Methoxycarbonyl Derivative of Narciclasine and Its Biological Activity. Molecules, 2022, 27, 3809.	3.8	1
3	Conversion of Natural Narciclasine to Its C-1 and C-6 Derivatives and Their Antitumor Activity Evaluation: Some Unusual Chemistry of Narciclasine. Molecules, 2022, 27, 4141.	3.8	1
4	Activity of natural and synthetic polygodial derivatives against <i>Trypanosoma cruzi</i> amastigotes, trypomastigotes and epimastigotes. Natural Product Research, 2021, 35, 792-795.	1.8	4
5	Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin A. Scientific Reports, 2021, 11, 10652.	3.3	9
6	Lessons in Organic Fluorescent Probe Discovery. ChemBioChem, 2021, 22, 3109-3139.	2.6	31
7	[3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Organic and Biomolecular Chemistry, 2021, 19, 7234-7245.	2.8	13
8	Polygodial and Ophiobolin A Analogues for Covalent Crosslinking of Anticancer Targets. International Journal of Molecular Sciences, 2021, 22, 11256.	4.1	5
9	Synthesis and biological evaluation of 10-benzyloxy-Narciclasine. Tetrahedron, 2021, 101, 132505.	1.9	4
10	A new series of acetohydroxamates shows in vitro and in vivo anticancer activity against melanoma. Investigational New Drugs, 2020, 38, 977-989.	2.6	11
11	Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria. Future Microbiology, 2020, 15, 579-590.	2.0	5
12	Nitroalkanes as electrophiles: synthesis of triazole-fused heterocycles with neuroblastoma differentiation activity. Organic and Biomolecular Chemistry, 2020, 18, 6651-6664.	2.8	14
13	A fluorescent target-guided Paal–Knorr reaction. RSC Advances, 2020, 10, 37035-37039.	3.6	4
14	Deciphering the chemical instability of sphaeropsidin A under physiological conditions – degradation studies and structural elucidation of the major metabolite. Organic and Biomolecular Chemistry, 2020, 18, 8147-8160.	2.8	0
15	Antiproliferative activity of naphthoquinones and indane carboxylic acids from lapachol against a panel of human cancer cell lines. Medicinal Chemistry Research, 2020, 29, 1058-1066.	2.4	5
16	Photo-Uncaging of a Microtubule-Targeted Rigidin Analogue in Hypoxic Cancer Cells and in a Xenograft Mouse Model. Journal of the American Chemical Society, 2019, 141, 18444-18454.	13.7	84
17	A Brief Up-to-Date Overview of Amaryllidaceae Alkaloids: Phytochemical Studies of <i>Narcissus tazetta</i> subsp. <i>tazetta</i> L., Collected in Turkey. Natural Product Communications, 2019, 14, 1934578X1987290.	0.5	3
18	Algae metabolites: from <i>in vitro</i> growth inhibitory effects to promising anticancer activity. Natural Product Reports, 2019, 36, 810-841.	10.3	25

#	Article	IF	CITATIONS
19	Microtubuleâ€Targeting 7â€Deazahypoxanthines Derived from Marine Alkaloid Rigidins: Exploration of the N3 and N9 Positions and Interaction with Multidrugâ€Resistance Proteins. ChemMedChem, 2019, 14, 322-333.	3.2	5
20	Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Marine Drugs, 2019, 17, 329.	4.6	64
21	Synthesis of Spiro[indole-3,5′-isoxazoles] with Anticancer Activity via a Formal [4 + 1]-Spirocyclization of Nitroalkenes to Indoles. Journal of Organic Chemistry, 2019, 84, 7123-7137.	3.2	28
22	Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. South African Journal of Botany, 2019, 126, 277-281.	2.5	25
23	Chemistry and biology of ophiobolin A and its congeners. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 859-869.	2.2	42
24	Photoactivated 2,3-distyrylindoles kill multi-drug resistant bacteria. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1879-1886.	2.2	13
25	The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure, 2018, 26, 416-425.e4.	3.3	51
26	Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 589-593.	2.2	19
27	Effect of polygodial and its direct derivatives on the mammalian Na + /K + -ATPase activity. European Journal of Pharmacology, 2018, 831, 1-8.	3.5	0
28	Polygodial analog induces apoptosis in LNCaP prostate cancer cells. European Journal of Pharmacology, 2018, 828, 154-162.	3.5	13
29	A nitroalkane-based approach to one-pot three-component synthesis of isocryptolepine and its analogs with potent anti-cancer activities. RSC Advances, 2018, 8, 36980-36986.	3.6	15
30	Novel polygodial analogs P3 and P27: Efficacious therapeutic agents disrupting mitochondrial function in oral squamous cell carcinoma. International Journal of Oncology, 2018, 53, 2627-2636.	3.3	4
31	The Rigidins: Isolation, Bioactivity, and Total Synthesis—Novel Pyrrolo[2,3- d]Pyrimidine Analogues Using Multicomponent Reactions. The Alkaloids Chemistry and Biology, 2018, 79, 191-220.	2.0	5
32	Novel Topologically Complex Scaffold Derived from Alkaloid Haemanthamine. Molecules, 2018, 23, 255.	3.8	11
33	One-Pot, Three-Component Assembly of Indoloquinolines: Total Synthesis of Isocryptolepine. Journal of Organic Chemistry, 2017, 82, 3011-3018.	3.2	31
34	Data in support of a harmine-derived beta-carboline in vitro effects in cancer cells through protein synthesis. Data in Brief, 2017, 12, 546-551.	1.0	4
35	A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. European Journal of Pharmacology, 2017, 805, 25-35.	3.5	46
36	Marine Molluskâ€Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Medicinal Research Reviews, 2017, 37, 702-801.	10.5	46

Alexander Kornienko

#	Article	IF	CITATIONS
37	Irreversible Protein Labeling by Paal–Knorr Conjugation. ChemBioChem, 2017, 18, 1792-1796.	2.6	11
38	Covalent modification of biological targets with natural products through Paal–Knorr pyrrole formation. Natural Product Reports, 2017, 34, 1051-1060.	10.3	44
39	Aspergillus candidus is a newly recognized source of sphaeropsidin A: Isolation, semi-synthetic derivatization and anticancer evaluation. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5436-5440.	2.2	8
40	Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem― Marine Drugs, 2016, 14, 98.	4.6	72
41	Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides. Bioorganic and Medicinal Chemistry, 2016, 24, 2716-2724.	3.0	14
42	5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. European Journal of Medicinal Chemistry, 2016, 120, 313-328.	5.5	16
43	Single dish gradient screening of small molecule localization. Organic and Biomolecular Chemistry, 2016, 14, 8241-8245.	2.8	6
44	Crystal structure and absolute configuration of sphaeropsidin A and its 6-O-p-bromobenzoate. Tetrahedron Letters, 2016, 57, 4592-4594.	1.4	7
45	Novel Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins with Potent in Vitro and in Vivo Anticancer Activities. Journal of Medicinal Chemistry, 2016, 59, 480-485.	6.4	17
46	lsatin derivatives with activity against apoptosis-resistant cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1558-1560.	2.2	41
47	Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by <i>Colletotrichum higginsianum</i> , with <i>in Vitro</i> Cytostatic Activity. Journal of Natural Products, 2016, 79, 116-125.	3.0	38
48	Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9â€Epipolygodial against Drugâ€Resistant Cancer Cells. ChemMedChem, 2015, 10, 2014-2026.	3.2	22
49	Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates against Drug-Resistant Cancer Cells. Journal of Medicinal Chemistry, 2015, 58, 2206-2220.	6.4	46
50	Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity against drug-resistant cancer. Fìtoterapìâ, 2015, 102, 41-48.	2.2	23
51	Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cellular and Molecular Life Sciences, 2015, 72, 3731-3746.	5.4	38
52	Toward a Cancer Drug of Fungal Origin. Medicinal Research Reviews, 2015, 35, 937-967.	10.5	59
53	Wittig derivatization of sesquiterpenoid polygodial leads to cytostatic agents with activity against drug resistant cancer cells and capable of pyrrolylation of primary amines. European Journal of Medicinal Chemistry, 2015, 103, 226-237.	5.5	16
54	Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation, structure–activity relationship and unique pyrrolylation of primary amines. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4544-4548.	2.2	36

#	Article	IF	CITATIONS
55	Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification. Journal of Liposome Research, 2015, 25, 232-260.	3.3	7
56	Sesterterpenoids with Anticancer Activity. Current Medicinal Chemistry, 2015, 22, 3502-3522.	2.4	49
57	C1,C2-ether derivatives of the Amaryllidaceae alkaloid lycorine: Retention of activity of highly lipophilic analogues against cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 923-927.	2.2	38
58	Synthetic and Biological Studies of Tubulin Targeting C2â€6ubstituted 7â€Deazahypoxanthines Derived from Marine Alkaloid Rigidins. ChemMedChem, 2014, 9, 1428-1435.	3.2	29
59	Fungal metabolites with anticancer activity. Natural Product Reports, 2014, 31, 617-627.	10.3	140
60	C–H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines. Organic and Biomolecular Chemistry, 2014, 12, 410-413.	2.8	19
61	Narciclasine as well as other Amaryllidaceae Isocarbostyrils are Promising GTPâ€ase Targeting Agents against Brain Cancers. Medicinal Research Reviews, 2013, 33, 439-455.	10.5	72
62	Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with inÂvitro growth inhibitory activity inÂhuman cancer cell lines. Tetrahedron, 2013, 69, 7466-7470.	1.9	34
63	Exploring Natural Product Chemistry and Biology with Multicomponent Reactions. 5. Discovery of a Novel Tubulin-Targeting Scaffold Derived from the Rigidin Family of Marine Alkaloids. Journal of Medicinal Chemistry, 2013, 56, 6886-6900.	6.4	45
64	Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones. Chemical Communications, 2013, 49, 9305.	4.1	43
65	Therapeutic Agents Triggering Nonapoptotic Cancer Cell Death. Journal of Medicinal Chemistry, 2013, 56, 4823-4839.	6.4	73
66	Antiproliferative activity of 2,3-disubstituted indoles toward apoptosis-resistant cancers cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3277-3282.	2.2	9
67	Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death and Disease, 2013, 4, e561-e561.	6.3	140
68	(2S,3R,4S,4aR)-2,3,4,7-Tetrahydroxy-3,4,4a,5-tetrahydro[1,3]dioxolo[4,5-j]phenanthridin-6(2H)-one hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o9-o10.	0.2	1
69	Unnatural C-1 homologues of pancratistatin — Synthesis and promising biological activities. Canadian Journal of Chemistry, 2012, 90, 932-943.	1.1	23
70	Reengineered epipodophyllotoxin. Chemical Communications, 2012, 48, 10416.	4.1	7
71	Structural simplification of bioactive natural products with multicomponent synthesis. 4. 4H-Pyrano-[2,3-b]naphthoquinones with anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5195-5198.	2.2	27
72	Bulbispermine: A Crinineâ€Type Amaryllidaceae Alkaloid Exhibiting Cytostatic Activity toward Apoptosisâ€Resistant Glioma Cells. ChemMedChem, 2012, 7, 815-822.	3.2	33

Alexander Kornienko

#	Article	IF	CITATIONS
73	Phenazines and cancer. Natural Product Reports, 2012, 29, 487.	10.3	107
74	Synthesis and anti-cancer, anti-metastatic evaluation of some new fluorinated isocoumarins and 3,4-dihydroisocoumarins. Journal of Fluorine Chemistry, 2012, 135, 240-245.	1.7	25
75	Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 3. Fused Uracil-Containing Heterocycles as Novel Topoisomerase-Targeting Agents. Journal of Medicinal Chemistry, 2011, 54, 2012-2021.	6.4	73
76	One-Pot Multicomponent Synthesis of Diversely Substituted 2-Aminopyrroles. A Short General Synthesis of Rigidins A, B, C, and D. Organic Letters, 2011, 13, 1118-1121.	4.6	73
77	Anticancer Properties of an Important Drug Lead Podophyllotoxin Can Be Efficiently Mimicked by Diverse Heterocyclic Scaffolds Accessible via One-Step Synthesis. Journal of Medicinal Chemistry, 2011, 54, 4234-4246.	6.4	60
78	Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Letters, 2011, 52, 6643-6645.	1.4	91
79	In search of a cytostatic agent derived from the alkaloid lycorine: Synthesis and growth inhibitory properties of lycorine derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 7252-7261.	3.0	49
80	Synthesis of C-1 homologues of pancratistatin and their preliminary biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4750-4752.	2.2	31
81	Unprecedented C-2 arylation of indole with diazonium salts: Syntheses of 2,3-disubstituted indoles and their antimicrobial activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4720-4723.	2.2	41
82	Aryliodine(III) diacetates as substrates for Pd–Ag catalyzed arylation of alkenes. Tetrahedron Letters, 2011, 52, 4327-4329.	1.4	17
83	Lycorine and its Derivatives for Anticancer Drug Design. Mini-Reviews in Medicinal Chemistry, 2010, 10, 41-50.	2.4	101
84	Simple di- and trivanillates exhibit cytostatic properties toward cancer cells resistant to pro-apoptotic stimuli. Bioorganic and Medicinal Chemistry, 2010, 18, 3823-3833.	3.0	40
85	Natural Polyphenols that Display Anticancer Properties through Inhibition of Kinase Activity. Current Medicinal Chemistry, 2010, 17, 812-825.	2.4	116
86	Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-Resistant Cancer Cells. Journal of Natural Products, 2010, 73, 1223-1227.	3.0	119
87	Chemoenzymatic Synthesis of Amaryllidaceae Constituents and Biological Evaluation of their C-1 Analogues. The Next Generation Synthesis of 7-Deoxypancratistatin and <i>trans</i> -Dihydrolycoricidine. Journal of Organic Chemistry, 2010, 75, 3069-3084.	3.2	59
88	Targeting of eEF1A with <i>Amaryllidaceae</i> isocarbostyrils as a strategy to combat melanomas. FASEB Journal, 2010, 24, 4575-4584.	0.5	110
89	Biological Evaluation of Structurally Diverse Amaryllidaceae Alkaloids and their Synthetic Derivatives: Discovery of Novel Leads for Anticancer Drug Design. Planta Medica, 2009, 75, 501-507.	1.3	114
90	Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. Phytochemistry Reviews, 2009, 8, 449-459.	6.5	96

#	Article	IF	CITATIONS
91	Synthesis of Structurally Simplified Analogues of Pancratistatin: Truncation of the Cyclitol Ring. Journal of Organic Chemistry, 2009, 74, 7122-7131.	3.2	25
92	Lycorine, the Main Phenanthridine Amaryllidaceae Alkaloid, Exhibits Significant Antitumor Activity in Cancer Cells That Display Resistance to Proapoptotic Stimuli: An Investigation of Structureâ´'Activity Relationship and Mechanistic Insight. Journal of Medicinal Chemistry, 2009, 52, 6244-6256.	6.4	214
93	Novel three-component synthesis and antiproliferative properties of diversely functionalized pyrrolines. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1392-1396.	2.2	63
94	Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 2. Antiproliferative and Antitubulin Activities of Pyrano[3,2- <i>c</i>]pyridones and Pyrano[3,2- <i>c</i>]quinolones. Journal of Medicinal Chemistry, 2008, 51, 2561-2570.	6.4	160
95	Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chemical Reviews, 2008, 108, 1982-2014.	47.7	328
96	Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. International Journal of Oncology, 2008, , .	3.3	41
97	Synthesis of Differentially Protectedmyo- andchiro-Inositols fromd-Xylose: Stereoselectivity in Intramolecular SmI2-Promoted Pinacol Reactions. Synthesis, 2008, 2008, 3148-3154.	2.3	3
98	Enantio- and Diastereodivergent Synthetic Route to Multifarious Cyclitols fromd-Xylose via Ring-Closing Metathesis. Synthesis, 2008, 2008, 3142-3147.	2.3	4
99	TOTAL SYNTHESES OF PANCRATISTATIN. A REVIEW. Organic Preparations and Procedures International, 2008, 40, 107-161.	1.3	54
100	Effects of crude aqueous medicinal plant extracts on growth and invasion of breast cancer cells. Oncology Reports, 2007, 17, 1487.	2.6	12
101	One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols. Journal of Organic Chemistry, 2007, 72, 3443-3453.	3.2	232
102	Antiproliferative and apoptosis inducing properties of pyrano[3,2-c]pyridones accessible by a one-step multicomponent synthesis. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3872-3876.	2.2	64
103	Discovery and Investigation of Antiproliferative and Apoptosis-Inducing Properties of New Heterocyclic Podophyllotoxin Analogues Accessible by a One-Step Multicomponent Synthesis. Journal of Medicinal Chemistry, 2007, 50, 5183-5192.	6.4	135
104	Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties. Organic and Biomolecular Chemistry, 2007, 5, 3865.	2.8	101
105	Structural simplification of bioactive natural products with multicomponent synthesis: Dihydropyridopyrazole analogues of podophyllotoxin. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1381-1385.	2.2	43
106	One-Step, Three-Component Synthesis of Pyridines and 1,4-Dihydropyridines with Manifold Medicinal Utilityâ€. Organic Letters, 2006, 8, 899-902.	4.6	181
107	Selectivity Guidelines and a Reductive Elimination-Based Model for Predicting the Stereochemical Course of Conjugate Addition Reactions of Organocuprates to γ-Alkoxy-α,β-enoates. Journal of Organic Chemistry, 2006, 71, 2630-2640.	3.2	28
108	Synthesis and Biological Evaluation of Aromatic Analogues of Conduritol F,l-chiro-Inositol, and Dihydroconduritol F Structurally Related to the Amaryllidaceae Anticancer Constituents. Journal of Organic Chemistry, 2006, 71, 5694-5707.	3.2	43

#	Article	IF	CITATIONS
109	A solution to the stereochemical problems posed by amaryllidaceae constituents using a highly syn-selective arylcuprate conjugate addition to γ-amino and γ-carbamato-α,β-enoates. Tetrahedron: Asymmetry, 2006, 17, 3170-3178.	1.8	8
110	Convenient one-step synthesis of a medicinally relevant benzopyranopyridine system. Tetrahedron Letters, 2006, 47, 9309-9312.	1.4	51
111	Effects of extracts from two Native American plants on proliferation of human breast and colon cancer cell lines in vitro. Oncology Reports, 2006, 15, 1327.	2.6	8
112	Highly anti-selective conjugate addition of arylcuprates to a γ-alkoxy-α,β-enoate. A new method to address stereochemical challenges presented by Amaryllidaceae alkaloids. Tetrahedron Letters, 2005, 46, 4433-4437.	1.4	13
113	Enantiodivergent Formal Synthesis of (+)- and (â^')-Cyclophellitol fromd-Xylose Based on the Latent Symmetry Concept. Journal of Organic Chemistry, 2005, 70, 742-745.	3.2	28
114	An Approach to Pancratistatins via Ring-Closing Metathesis:  Efficient Synthesis of Novel 1-Aryl-1-deoxyconduritols F. Organic Letters, 2004, 6, 831-834.	4.6	55
115	Probing the functional requirements of the l-haba side-chain of amikacin—synthesis, 16S A-site rRNA binding, and antibacterial activity. Tetrahedron, 2003, 59, 995-1007.	1.9	27
116	Design, modeling and synthesis of functionalized paromamine analogs. Tetrahedron, 2001, 57, 3255-3265.	1.9	38
117	Synthesis of cyclitols via ring-closing metathesis. Tetrahedron: Asymmetry, 1999, 10, 827-829.	1.8	41
118	Synthesis of a jojoba bean disaccharide. Carbohydrate Research, 1998, 310, 141-144.	2.3	19
119	Practical synthesis of a differentially protected myo-inositol. Tetrahedron: Asymmetry, 1998, 9, 2783-2786.	1.8	14
120	Enantiospecific synthesis of a differentially protected L-chiro-inositol from D-xylose. Tetrahedron Letters, 1997, 38, 6497-6500.	1.4	24
121	A new convenient method to obtain pyrroles from tertiary n-allylthioamides. Tetrahedron Letters, 1995, 36, 4619-4622.	1.4	13