List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81586/publications.pdf Version: 2024-02-01

SHRIIMAD DAL

#	Article	IF	CITATIONS
1	<i>Chlamydia</i> Infections and Heart Disease Linked Through Antigenic Mimicry. Science, 1999, 283, 1335-1339.	12.6	430
2	lmaging of Effector Memory T Cells during a Delayed-Type Hypersensitivity Reaction and Suppression by Kv1.3 Channel Block. Immunity, 2008, 29, 602-614.	14.3	197
3	Vaccination with the Chlamydia trachomatis Major Outer Membrane Protein Can Elicit an Immune Response as Protective as That Resulting from Inoculation with Live Bacteria. Infection and Immunity, 2005, 73, 8153-8160.	2.2	152
4	Immunization with the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein Can Elicit a Protective Immune Response against a Genital Challenge. Infection and Immunity, 2001, 69, 6240-6247.	2.2	101
5	<i>Chlamydia trachomatis</i> Native Major Outer Membrane Protein Induces Partial Protection in Nonhuman Primates: Implication for a Trachoma Transmission-Blocking Vaccine. Journal of Immunology, 2009, 182, 8063-8070.	0.8	100
6	Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infection and Immunity, 1997, 65, 3361-3369.	2.2	94
7	Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chalamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine, 1997, 15, 575-582.	3.8	91
8	Structural and Functional Analyses of the Major Outer Membrane Protein of Chlamydia trachomatis. Journal of Bacteriology, 2007, 189, 6222-6235.	2.2	75
9	Intranasal immunization induces long-term protection in mice against a Chlamydia trachomatis genital challenge. Infection and Immunity, 1996, 64, 5341-5348.	2.2	72
10	Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Vaccine, 1999, 17, 459-465.	3.8	67
11	Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein. Vaccine, 2009, 27, 5020-5025.	3.8	67
12	Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Vaccine, 2006, 24, 766-775.	3.8	59
13	Immunization with the <i>Chlamydia trachomatis</i> Mouse Pneumonitis Major Outer Membrane Protein by Use of CpG Oligodeoxynucleotides as an Adjuvant Induces a Protective Immune Response against an Intranasal Chlamydial Challenge. Infection and Immunity, 2002, 70, 4812-4817.	2.2	55
14	Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine, 2011, 29, 4623-4631.	3.8	54
15	New Murine Model for the Study of Chlamydia trachomatis Genitourinary Tract Infections in Males. Infection and Immunity, 2004, 72, 4210-4216.	2.2	50
16	Increased Immunoaccessibility of MOMP Epitopes in a Vaccine Formulated with Amphipols May Account for the Very Robust Protection Elicited against a Vaginal Challenge with <i>Chlamydia muridarum</i> . Journal of Immunology, 2014, 192, 5201-5213.	0.8	47
17	A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine, 2011, 29, 6641-6649.	3.8	44
18	Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection. Journal of Medical Microbiology, 1998, 47, 599-605.	1.8	43

#	Article	IF	CITATIONS
19	Identification of Immunodominant Antigens by Probing a Whole <i>Chlamydia trachomatis</i> Open Reading Frame Proteome Microarray Using Sera from Immunized Mice. Infection and Immunity, 2011, 79, 246-257.	2.2	42
20	Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine, 2011, 29, 5276-5283.	3.8	37
21	Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine, 2010, 28, 3014-3024.	3.8	36
22	Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine, 2009, 27, 6239-6246.	3.8	33
23	Immunization with the Chlamydia trachomatis major outer membrane protein, using the outer surface protein A of Borrelia burgdorferi as an adjuvant, can induce protection against a chlamydial genital challenge. Vaccine, 2003, 21, 1455-1465.	3.8	30
24	Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model. Vaccine, 2011, 29, 3456-3464.	3.8	30
25	Characterization of the Disulfide Bonds and Free Cysteine Residues of the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein. Biochemistry, 2005, 44, 6250-6256.	2.5	29
26	Enhancement of the protective efficacy of a Chlamydia trachomatis recombinant vaccine by combining systemic and mucosal routes for immunization. Vaccine, 2010, 28, 7659-7666.	3.8	28
27	Susceptibility of Mice to Vaginal Infection withChlamydia trachomatis Mouse Pneumonitis Is Dependent on the Age of the Animal. Infection and Immunity, 2001, 69, 5203-5206.	2.2	26
28	<i>Chlamydia trachomatis</i> vaccines for genital infections: where are we and how far is there to go?. Expert Review of Vaccines, 2021, 20, 421-435.	4.4	26
29	Effects of antibody isotype and host cell type on in vitro neutralization of Chlamydia trachomatis. Infection and Immunity, 1993, 61, 498-503.	2.2	24
30	A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Microbes and Infection, 2014, 16, 244-252.	1.9	23
31	Sequence of the gene encoding the major outer membrane protein of the mouse pneumonitis biovar of Chlamydia trachomatis. Gene, 1991, 106, 137-138.	2.2	22
32	Protection of Wild-Type and Severe Combined Immunodeficiency Mice against an Intranasal Challenge by Passive Immunization with Monoclonal Antibodies to the <i>Chlamydia trachomatis</i> Mouse Pneumonitis Major Outer Membrane Protein. Infection and Immunity, 2008, 76, 5581-5587.	2.2	21
33	Proteomic identification of immunodominant chlamydial antigens in a mouse model. Journal of Proteomics, 2012, 77, 176-186.	2.4	21
34	The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine, 2017, 35, 1705-1711.	3.8	21
35	Role of matrix metalloproteinase-7 in the modulation of a Chlamydia trachomatis infection. Immunology, 2006, 117, 213-219.	4.4	20
36	A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a <i>Chlamydia muridarum</i> genital challenge. Immunology, 2015, 146, 432-443.	4.4	19

#	Article	IF	CITATIONS
37	Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine, 2017, 35, 2543-2549.	3.8	19
38	Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice. Infection and Immunity, 2018, 86, .	2.2	17
39	A Murine Model for the Study of <i>Chlamydia trachomatis</i> Genital Infections during Pregnancy. Infection and Immunity, 1999, 67, 2607-2610.	2.2	17
40	Differences in infectivity and induction of infertility: a comparative study of Chlamydia trachomatis strains in the murine model. Microbes and Infection, 2013, 15, 219-229.	1.9	15
41	Vaccination with the Recombinant Major Outer Membrane Protein Elicits Antibodies to the Constant Domains and Induces Cross-Serovar Protection against Intranasal Challenge with Chlamydia trachomatis. Infection and Immunity, 2013, 81, 1741-1750.	2.2	15
42	TRAIL-R1 Is a Negative Regulator of Pro-Inflammatory Responses and Modulates Long-Term Sequelae Resulting from Chlamydia trachomatis Infections in Humans. PLoS ONE, 2014, 9, e93939.	2.5	15
43	Induction of protective immunity against a Chlamydia trachomatis genital infection in three genetically distinct strains of mice. Immunology, 2003, 110, 368-375.	4.4	13
44	Induction of protection in mice against a respiratory challenge by a vaccine formulated with the Chlamydia major outer membrane protein adjuvanted with IC31®. Vaccine, 2011, 29, 2437-2443.	3.8	13
45	Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. Npj Vaccines, 2020, 5, 90.	6.0	13
46	Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine, 2018, 36, 6640-6649.	3.8	12
47	A Recombinant Chlamydia trachomatis MOMP Vaccine Elicits Cross-serogroup Protection in Mice Against Vaginal Shedding and Infertility. Journal of Infectious Diseases, 2020, 221, 191-200.	4.0	12
48	Role of Nramp1 Deletion in Chlamydia Infection in Mice. Infection and Immunity, 2000, 68, 4831-4833.	2.2	10
49	Protection against a chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold. Npj Vaccines, 2020, 5, 37.	6.0	10
50	C3H Male Mice with Severe Combined Immunodeficiency Cannot Clear a Urethral Infection with a Human Serovar of <i>Chlamydia trachomatis</i> . Infection and Immunity, 2009, 77, 5602-5607.	2.2	9
51	Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine, 2020, 38, 4412-4422.	3.8	9
52	Immunogenic and protective ability of the two developmental forms of Chlamydiae in a mouse model of infertility. Vaccine, 1999, 18, 752-761.	3.8	8
53	Vaccination with major outer membrane protein proteosomes elicits protection in mice against a Chlamydia respiratory challenge. Microbes and Infection, 2013, 15, 920-927.	1.9	8
54	Mechanism of T-cell mediated protection in newborn mice against aÂChlamydia infection. Microbes and Infection, 2013, 15, 607-614.	1.9	8

#	Article	IF	CITATIONS
55	Assessment of the role in protection and pathogenesis of the Chlamydia muridarum V-type ATP synthase subunit A (AtpA) (TC0582). Microbes and Infection, 2014, 16, 123-133.	1.9	8
56	Characterization of the Horizontal and Vertical Sexual Transmission of <i>Chlamydia</i> Genital Infections in a New Mouse Model. Infection and Immunity, 2019, 87, .	2.2	8
57	Immune response against Chlamydia trachomatis via toll-like receptors is negatively regulated by SIGIRR. PLoS ONE, 2020, 15, e0230718.	2.5	7
58	Vaccination of newborn mice induces a strong protective immune response against respiratory and genital challenges with Chlamydia trachomatis. Vaccine, 2005, 23, 5351-5358.	3.8	6
59	Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen. Microbes and Infection, 2016, 18, 245-253.	1.9	6
60	A new murine model for testing vaccines against genital Chlamydia trachomatis infections in males. Vaccine, 2010, 28, 7606-7612.	3.8	5
61	Protection of outbred mice against a vaginal challenge by a <i>Chlamydia trachomatis</i> serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant. Human Vaccines and Immunotherapeutics, 2020, 16, 2537-2547.	3.3	5
62	Induction of protection in mice against a respiratory challenge by a vaccine formulated with exosomes isolated from Chlamydia muridarum infected cells. Npj Vaccines, 2020, 5, 87.	6.0	4
63	Maternal immunity partially protects newborn mice against a Chlamydia trachomatis intranasal challenge. Journal of Reproductive Immunology, 2010, 86, 151-157.	1.9	3
64	A primary Chlamydia trachomatis genital infection of rhesus macaques identifies new immunodominant B-cell antigens. PLoS ONE, 2021, 16, e0250317.	2.5	2
65	Induction of Protection in Mice against a Chlamydia muridarum Respiratory Challenge by a Vaccine Formulated with the Major Outer Membrane Protein in Nanolipoprotein Particles. Vaccines, 2021, 9, 755.	4.4	2
66	A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Frontiers in Pharmacology, 2021, 12, 768461.	3.5	1
67	Cell-free Scaled Production and Adjuvant Addition to a Recombinant Major Outer Membrane Protein from Chlamydia muridarum for Vaccine Development. Journal of Visualized Experiments, 2022, , .	0.3	0
68	Title is missing!. , 2020, 15, e0230718.		0
69	Title is missing!. , 2020, 15, e0230718.		0
70	Title is missing!. , 2020, 15, e0230718.		0
71	Title is missing!. , 2020, 15, e0230718.		Ο