Masato Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157964/publications.pdf Version: 2024-02-01

Μλέλτο Suzuki

#	Article	IF	CITATIONS
1	Cognitive function evaluation in premenstrual syndrome during the follicular and luteal phases using near-infrared spectroscopy. Comprehensive Psychoneuroendocrinology, 2022, 10, 100117.	1.7	2
2	Electrofusion of cells with different diameters by generating asymmetrical electric field in the microwell array. Analytical Sciences, 2022, 38, 235-239.	1.6	2
3	Selective retrieval of antibody-secreting hybridomas in cell arrays based on the dielectrophoresis. Biosensors and Bioelectronics, 2022, 209, 114250.	10.1	7
4	Discrimination of cell-differentiation using a cell-binding assay based on the conversion of cell-patterns with dielectrophoresis. Biosensors and Bioelectronics, 2021, 175, 112892.	10.1	2
5	Selective Trapping and Retrieval of Single Cells Using Microwell Array Devices Combined with Dielectrophoresis. Analytical Sciences, 2021, 37, 803-806.	1.6	4
6	Electrorotation Rates of K562 Cells Accompanied by Erythroid Differentiation Induced by Sodium Butyrate. Analytical Sciences, 2021, 37, 229-232.	1.6	2
7	Simultaneous Monitoring of Oxygen Consumption and Movement of Zebrafish Embryos Based on an LSI-based Electrochemical Multiple-biosensor. Bunseki Kagaku, 2021, 70, 535-540.	0.2	Ο
8	Microfluidic Separation of Blood Cells Based on the Negative Dielectrophoresis Operated by Three Dimensional Microband Electrodes. Micromachines, 2020, 11, 833.	2.9	8
9	Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. Analyst, The, 2020, 145, 4188-4195.	3.5	16
10	Rapid Formation of Arrayed Cells on an Electrode with Microwells by a Scanning Electrode Based on Positive Dielectrophoresis. Analytical Sciences, 2019, 35, 701-704.	1.6	8
11	Rapid Formation of Aggregates with Uniform Numbers of Cells Based on Three-dimensional Dielectrophoresis. Analytical Sciences, 2019, 35, 895-901.	1.6	8
12	Non-contact acquisition of brain function using a time-extracted compact camera. Scientific Reports, 2019, 9, 17854.	3.3	5
13	Point of care testing apparatus for immunosensing. , 2019, , 193-205.		Ο
14	Particle Patterning Based on Positive Dielectrophoresis Using a Scanning Microelectrode. Sensors and Materials, 2019, 31, 23.	0.5	1
15	Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers. Stem Cells International, 2016, 2016, 1-9.	2.5	12
16	Electrochemical Polymerization of PEDOT/Biomolecule Composite Films on Microelectrodes for the Measurement of Extracellular Field Potential. Electrochemistry, 2016, 84, 354-357.	1.4	3
17	Deciphering the Receptor Repertoire Encoding Specific Odorants by Time-Lapse Single-Cell Array Cytometry. Scientific Reports, 2016, 6, 19934.	3.3	12
18	Patterning with particles using three-dimensional interdigitated array electrodes with negative dielectrophoresis and its application to simple immunosensing. Electrochimica Acta, 2012, 82, 35-42.	5.2	15

MASATO SUZUKI

#	Article	IF	CITATIONS
19	Development of a GPCR Based Electrophysiological Biosensor. Biophysical Journal, 2011, 100, 621a.	0.5	0
20	Electrorotation chip consisting of three-dimensional interdigitated array electrodes. Sensors and Actuators B: Chemical, 2011, 153, 468-473.	7.8	20
21	Fabrication of Line and Grid Patterns with Cells Based on Negative Dielectrophoresis. Journal of Robotics and Mechatronics, 2010, 22, 613-618.	1.0	4
22	Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis. Sensors and Actuators B: Chemical, 2009, 136, 320-325.	7.8	26
23	Control of the microparticle position in the channel based on dielectrophoresis. Sensors and Actuators B: Chemical, 2009, 142, 400-403.	7.8	16
24	Rapid fabrication of nanoparticles array on polycarbonate membrane based on positive dielectrophoresis. Sensors and Actuators B: Chemical, 2008, 131, 424-431.	7.8	19
25	Negative dielectrophoretic patterning with different cell types. Biosensors and Bioelectronics, 2008, 24, 1043-1047.	10.1	85
26	Micropatterning with different cell types by dielectrophoretic manipulation. , 2007, , .		1
27	Negative Dielectrophoretic Patterning with Colloidal Particles and Encapsulation into a Hydrogel. Langmuir, 2007, 23, 4088-4094.	3.5	66
28	Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis. Biosensors and Bioelectronics, 2007, 22, 2730-2736.	10.1	66
29	Development of Negative Dielectrophoretic Cellular Patterning System for Living Cells. , 2006, , .		0
30	Separation of Live and Dead Microorganisms in a Micro-Fluidic Device by Dielectrophoresis. Bunseki Kagaku, 2005, 54, 1189-1195.	0.2	12
31	Dielectrophoretic Micropatterning with Microparticle Monolayers Covalently Linked to Glass Surfaces. Langmuir, 2004, 20, 11005-11011.	3.5	92