Gyorgy Szittya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157953/publications.pdf

Version: 2024-02-01

279701 360920 4,264 34 23 35 citations h-index g-index papers 35 35 35 3923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO Journal, 2002, 21, 3070-3080.	3.5	562
2	Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 2003, 115, 799-811.	13.5	494
3	Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 2008, 18, 1602-1609.	2.4	423
4	Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO Journal, 2003, 22, 633-640.	3. 5	416
5	Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO Journal, 2004, 23, 876-884.	3.5	357
6	Identification of grapevine microRNAs and their targets using high throughput sequencing and degradome analysis. Plant Journal, 2010, 62, 960-76.	2.8	335
7	High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 2008, 9, 593.	1.2	248
8	Short Defective Interfering RNAs of Tombusviruses Are Not Targeted but Trigger Post-Transcriptional Gene Silencing against Their Helper Virus. Plant Cell, 2002, 14, 359-372.	3.1	215
9	Molecular Bases of Viral RNA Targeting by Viral Small Interfering RNA-Programmed RISC. Journal of Virology, 2007, 81, 3797-3806.	1.5	155
10	Profiling of short RNAs during fleshy fruit development reveals stageâ€specific sRNAome expression patterns. Plant Journal, 2011, 67, 232-246.	2.8	138
11	Structural and Functional Analysis of Viral siRNAs. PLoS Pathogens, 2010, 6, e1000838.	2.1	128
12	RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Current Topics in Microbiology and Immunology, 2013, 371, 153-181.	0.7	98
13	PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Research, 2012, 40, e103-e103.	6.5	96
14	NGS of Virus-Derived Small RNAs as a Diagnostic Method Used to Determine Viromes of Hungarian Vineyards. Frontiers in Microbiology, 2015, 9, 122.	1.5	95
15	Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions. Planta, 2012, 236, 1875-1887.	1.6	90
16	Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through <i>NF</i> â€ <i>YA2</i> and <i>YUC2</i> . Plant, Cell and Environment, 2018, 41, 2404-2417.	2.8	67
17	Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62, no-no.	2.8	53
18	The ORF1 Products of Tombusviruses Play a Crucial Role in Lethal Necrosis of Virus-Infected Plants. Journal of Virology, 2000, 74, 10873-10881.	1.5	41

#	Article	IF	CITATIONS
19	AGO-unbound cytosolic pool of mature miRNAs in plant cells reveals a novel regulatory step at AGO1 loading. Nucleic Acids Research, 2019, 47, 9803-9817.	6.5	38
20	Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genomics, 2015, 16, 1025.	1,2	37
21	Cymbidium Ringspot Tombusvirus Coat Protein Coding Sequence Acts as an Avirulent RNA. Journal of Virology, 2001, 75, 2411-2420.	1.5	31
22	Characterization of the Molecular Mechanism of Defective Interfering RNA-Mediated Symptom Attenuation in Tombusvirus-Infected Plants. Journal of Virology, 1998, 72, 6251-6256.	1.5	28
23	Generation of Defective Interfering RNA Dimers of Cymbidium Ringspot Tombusvirus. Virology, 1995, 207, 510-517.	1.1	23
24	The complete nucleotide sequence and synthesis of infectious RNA of genomic and defective interfering RNAs of TBSV-P. Virus Research, 2000, 69, 131-136.	1.1	16
25	Suppression of <scp><i>NB‣RR</i></scp> genes by miRNAs promotes nitrogenâ€fixing nodule development in <scp><i>Medicago truncatula</i></scp> . Plant, Cell and Environment, 2020, 43, 1117-1129.	2.8	14
26	Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley (Hordeum vulgare L.). Biomolecules, 2020, 10, 929.	1.8	14
27	Transcriptome reprogramming in the shoot apical meristem of CymRSV―nfected <i>Nicotiana benthamiana</i> plants associates with viral exclusion and the lack of recovery. Molecular Plant Pathology, 2019, 20, 1748-1758.	2.0	11
28	Expansion of Capsicum annum fruit is linked to dynamic tissue-specific differential expression of miRNA and siRNA profiles. PLoS ONE, 2018, 13, e0200207.	1.1	8
29	Size-dependent cell-to-cell movement of defective interfering RNAs of Cymbidium ringspot virus. Journal of General Virology, 2002, 83, 1505-1510.	1.3	8
30	Molecular characterization of a beet ringspot nepovirus isolated from Begonia ricinifolia in Hungary. Archives of Virology, 2017, 162, 3559-3562.	0.9	7
31	First report of the infection of alfalfa mosaic virus in Salvia sclarea in Hungary. Journal of Plant Pathology, 2018, 100, 607-607.	0.6	7
32	Regulation of High-Temperature Stress Response by Small RNAs. Concepts and Strategies in Plant Sciences, 2020, , 171-197.	0.6	3
33	Molecular characterization and In Vitro synthesis of infectious RNA of a Turnip vein-clearing virus isolated from Alliaria petiolata in Hungary. PLoS ONE, 2019, 14, e0224398.	1.1	2
34	Identification of ARGONAUTE/Small RNA Cleavage Sites by Degradome Sequencing. Methods in Molecular Biology, 2017, 1640, 113-128.	0.4	1