
Patrice D. Cani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	6.1	95
2	Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxidants and Redox Signaling, 2022, 37, 394-415.	2.5	18
3	Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159056.	1.2	12
4	Diet and depression: future needs to unlock the potential. Molecular Psychiatry, 2022, 27, 778-780.	4.1	8
5	Commentary on: prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 2022, 127, 554-555.	1.2	7
6	Tumor Metabolism Is Affected by Obesity in Preclinical Models of Triple-Negative Breast Cancer. Cancers, 2022, 14, 562.	1.7	7
7	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	6.1	661
8	Nutrition et microbiote dans le diabète de type 2. De la symbiose à la dysfonction métabolique. Medecine Des Maladies Metaboliques, 2022, 16, 114-114.	0.1	3
9	Three of a Kind: Control of the Expression of Liver-Expressed Antimicrobial Peptide 2 (LEAP2) by the Endocannabinoidome and the Gut Microbiome. Molecules, 2022, 27, 1.	1.7	38
10	Possible Interactions between Malaria, Helminthiases and the Gut Microbiota: A Short Review. Microorganisms, 2022, 10, 721.	1.6	4
11	Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites, 2022, 12, 301.	1.3	7
12	Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Medicine, 2022, 20, 110.	2.3	21
13	Microbiota and Metabolite Profiling as Markers of Mood Disorders: A Cross-Sectional Study in Obese Patients. Nutrients, 2022, 14, 147.	1.7	6
14	Breath volatile metabolome reveals the impact of dietary fibres on the gut microbiota: Proof of concept in healthy volunteers. EBioMedicine, 2022, 80, 104051.	2.7	7
15	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	8.2	239
16	Glucose Stimulates Gut Motility in Fasted and Fed Conditions: Potential Involvement of a Nitric Oxide Pathway. Nutrients, 2022, 14, 2176.	1.7	3
17	HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses, 2022, 14, 1373.	1.5	2
18	Diet and depression: exploring the biological mechanisms of action. Molecular Psychiatry, 2021, 26, 134-150.	4.1	265

#	Article	IF	CITATIONS
19	Toxicological safety evaluation of pasteurized <i>Akkermansia muciniphila</i> . Journal of Applied Toxicology, 2021, 41, 276-290.	1.4	30
20	Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut, 2021, 70, 1078-1087.	6.1	28
21	Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut, 2021, 70, 1088-1097.	6.1	105
22	Noninvasive monitoring of fibre fermentation in healthy volunteers by analyzing breath volatile metabolites: lessons from the FiberTAG intervention study. Gut Microbes, 2021, 13, 1-16.	4.3	8
23	Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: a double-blind randomized placebo-controlled trial. Scientific Reports, 2021, 11, 2627.	1.6	18
24	Gut microbes participate in food preference alterations during obesity. Gut Microbes, 2021, 13, 1959242.	4.3	35
25	Beneficial Effects of Akkermansia muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells, 2021, 10, 185.	1.8	43
26	Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells, 2021, 10, 71.	1.8	6
27	Multiâ€compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 456-475.	2.9	30
28	The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells, 2021, 10, 400.	1.8	19
29	Do diet and microbes really â€~PREDICT' cardiometabolic risks?. Nature Reviews Endocrinology, 2021, 17, 259-260.	4.3	7
30	Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: results from the Food4Gut randomized placebo-controlled trial. European Journal of Nutrition, 2021, 60, 3159-3170.	1.8	46
31	Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021, 248, R67-R82.	1.2	85
32	Hepatoprotective Effects of Indole, a Gut Microbial Metabolite, in Leptin-Deficient Obese Mice. Journal of Nutrition, 2021, 151, 1507-1516.	1.3	27
33	Circulating fatty acids and endocannabinoidome-related mediator profiles associated to human longevity. GeroScience, 2021, 43, 1783-1798.	2.1	9
34	Prebiotic Effect of Berberine and Curcumin Is Associated with the Improvement of Obesity in Mice. Nutrients, 2021, 13, 1436.	1.7	22
35	Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients. Clinical Nutrition, 2021, 40, 2035-2044.	2.3	30
36	Tumor apelin and obesity are associated with reduced neoadjuvant chemotherapy response in a cohort of breast cancer patients. Scientific Reports, 2021, 11, 9922.	1.6	10

#	Article	IF	CITATIONS
37	Prebiotic effect on mood in obese patients is determined by the initial gut microbiota composition: A randomized, controlled trial. Brain, Behavior, and Immunity, 2021, 94, 289-298.	2.0	35
38	Dietary fiber deficiency as a component of malnutrition associated with psychological alterations in alcohol use disorder. Clinical Nutrition, 2021, 40, 2673-2682.	2.3	11
39	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	1.6	46
40	A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metabolism, 2021, 33, 1073-1075.	7.2	39
41	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	4.9	92
42	Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021, 250, X1.	1.2	0
43	Authors' Response: " <scp><i>Akkermansia muciniphila</i></scp> reduces <scp><i>Porphyromonas gingivalis</i></scp> induced inflammation and periodontal bone destruction― Journal of Clinical Periodontology, 2021, 48, 1493-1494.	2.3	1
44	A dynamic association between myosteatosis and liver stiffness: Results from a prospective interventional study in obese patients. JHEP Reports, 2021, 3, 100323.	2.6	24
45	Gut barrier and microbiota changes with glycine and branched hain amino acid supplementation in chronic haemodialysis patients. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1527-1539.	2.9	10
46	Glycine increases fatâ€free mass in malnourished haemodialysis patients: a randomized doubleâ€blind crossover trial. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1540-1552.	2.9	6
47	Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197, 108721.	2.0	27
48	Microbiota analysis and transient elastography reveal new extra-hepatic components of liver steatosis and fibrosis in obese patients. Scientific Reports, 2021, 11, 659.	1.6	29
49	Inflammationâ€induced cholestasis in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 70-90.	2.9	24
50	Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes, 2021, 13, 1994270.	4.3	24
51	<i>Akkermansia muciniphila</i> Exerts Lipidâ€Lowering and Immunomodulatory Effects without Affecting Neointima Formation in Hyperlipidemic APOE*3â€Leiden.CETP Mice. Molecular Nutrition and Food Research, 2020, 64, e1900732.	1.5	39
52	Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes―as Therapeutic Gut Factors. Neuroendocrinology, 2020, 110, 139-146.	1.2	30
53	Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. Journal of Lipid Research, 2020, 61, 70-85.	2.0	80
54	<i>Akkermansia muciniphila</i> reduces <i>Porphyromonas gingivalis</i> â€induced inflammation and periodontal bone destruction. Journal of Clinical Periodontology, 2020, 47, 202-212.	2.3	78

#	Article	IF	CITATIONS
55	Acute environmental hypoxia potentiates satellite cellâ€dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB Journal, 2020, 34, 1885-1900.	0.2	18
56	Gut Microbiota-Induced Changes in Î ² -Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Alcohol Use Disorder. Cell Reports, 2020, 33, 108238.	2.9	87
57	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
58	Obesity and tripleâ€negativeâ€breastâ€cancer: Is apelin a new key target?. Journal of Cellular and Molecular Medicine, 2020, 24, 10233-10244.	1.6	16
59	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	1.8	14
60	Acetate: Friend or foe against breast tumour growth in the context of obesity?. Journal of Cellular and Molecular Medicine, 2020, 24, 14195-14204.	1.6	4
61	Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E779-E791.	1.8	19
62	Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes, 2020, 12, 1810530.	4.3	31
63	Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 2020, 69, 2232-2243.	6.1	698
64	Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut, 2020, 69, 911-919.	6.1	41
65	Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells, 2020, 9, 1247.	1.8	17
66	Gut microbiota and regulation of myokine-adipokine function. Current Opinion in Pharmacology, 2020, 52, 9-17.	1.7	29
67	The colonoscopic leakage model: a new model to study the intestinal wound healing at molecular level. Gut, 2020, 69, 2071-2073.	6.1	1
68	Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials, 2020, 255, 120209.	5.7	30
69	Microbial signatures in metabolic tissues: a novel paradigm for obesity and diabetes?. Nature Metabolism, 2020, 2, 211-212.	5.1	11
70	Mediterranean diet, gut microbiota and health: when age and calories do not add up!. Gut, 2020, 69, 1167-1168.	6.1	35
71	Pasteurized <i>Akkermansia muciniphila</i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	4.3	134
72	La préparation colique en chirurgie colorectale. Praticien En Anesthesie Reanimation, 2020, 24, 35-40.	0.0	0

#	Article	IF	CITATIONS
73	Pasteurized <i>Akkermansia muciniphila</i> protects from fat mass gain but not from bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E480-E491.	1.8	27
74	Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 2020, 69, 1975-1987.	6.1	141
75	Gut microbiota and obesity: causally linked?. Expert Review of Gastroenterology and Hepatology, 2020, 14, 401-403.	1.4	19
76	Metabolic Imaging Using Hyperpolarized Pyruvate–Lactate Exchange Assesses Response or Resistance to the EGFR Inhibitor Cetuximab in Patient-Derived HNSCC Xenografts. Clinical Cancer Research, 2020, 26, 1932-1943.	3.2	8
77	Link between gut microbiota and health outcomes in inulin -treated obese patients: Lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clinical Nutrition, 2020, 39, 3618-3628.	2.3	87
78	Do Probiotics During In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota With Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing Saccharomyces to a Mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Frontiers in Public Health, 2020, 8, 578089.	1.3	31
79	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
80	Dysosmobacter welbionis gen. nov., sp. nov., isolated from human faeces and emended description of the genus Oscillibacter. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4851-4858.	0.8	29
81	Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut, 2019, 68, 5-6.	6.1	34
82	Oral vancomycin treatment does not alter markers of postprandial inflammation in lean and obese subjects. Physiological Reports, 2019, 7, e14199.	0.7	10
83	The Gut Microbiome Influences Host Endocrine Functions. Endocrine Reviews, 2019, 40, 1271-1284.	8.9	179
84	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	15.2	1,281
85	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	1.8	67
86	The Janus Face of Cereals: Wheatâ€Derived Prebiotics Counteract the Detrimental Effect of Gluten on Metabolic Homeostasis in Mice Fed a Highâ€Fat/Highâ€Sucrose Diet. Molecular Nutrition and Food Research, 2019, 63, e1900632.	1.5	15
87	Reply to â€~Simpson's paradox in proof-of-concept studies'. Nature Medicine, 2019, 25, 1640-1641.	15.2	2
88	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
89	Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction. Scientific Reports, 2019, 9, 14150.	1.6	25
90	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	5.8	100

#	Article	IF	CITATIONS
91	Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Current Nutrition Reports, 2019, 8, 307-316.	2.1	50
92	Hepatic MyD88 regulates liver inflammation by altering synthesis of oxysterols. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E99-E108.	1.8	15
93	Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. American Journal of Clinical Nutrition, 2019, 109, 1683-1695.	2.2	121
94	Is colonic propionate delivery a novel solution to improve metabolism and inflammation in overweight or obese subjects?. Gut, 2019, 68, 1352-1353.	6.1	13
95	Genetic deletion of soluble 5′-nucleotidase II reduces body weight gain and insulin resistance induced by a high-fat diet. Molecular Genetics and Metabolism, 2019, 126, 377-387.	0.5	24
96	Targeting gut microbiota with a complex mix of dietary fibers improves metabolicÂdiseases. Kidney International, 2019, 95, 14-16.	2.6	21
97	Microbiota and metabolites in metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 69-70.	4.3	172
98	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	5.1	354
99	How Probiotics Affect the Microbiota. Frontiers in Cellular and Infection Microbiology, 2019, 9, 454.	1.8	258
100	Butyricimonas faecalis sp. nov., isolated from human faeces and emended description of the genus Butyricimonas. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 833-838.	0.8	17
101	2017-P: Gut Microbes after Bariatric Surgery in Humans Improve Glucose Control in Mice without Fat Loss. Diabetes, 2019, 68, .	0.3	0
102	Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity, 2018, 26, 792-800.	1.5	141
103	Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. Nutrition and Diabetes, 2018, 8, 15.	1.5	28
104	Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons. Molecular Metabolism, 2018, 10, 100-108.	3.0	46
105	Size Effect on Lipid Nanocapsule-Mediated GLP-1 Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2018, 15, 108-115.	2.3	23
106	<i>Akkermansia muciniphila</i> induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut, 2018, 67, 1445-1453.	6.1	270
107	Particle size determines the anti-inflammatory effect of wheat bran in a model of fructose over-consumption: Implication of the gut microbiota. Journal of Functional Foods, 2018, 41, 155-162.	1.6	24
108	Sustained biochemical response to oral antibiotics in pediatric PSC and ASC are correlated to changes in gut microbiota during therapy. Journal of Hepatology, 2018, 68, S226-S227.	1.8	0

#	Article	IF	CITATIONS
109	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	6.1	150
110	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
111	Elevated high density lipoprotein cholesterol and low grade systemic inflammation is associated with increased gut permeability in normoglycemic men. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 1296-1303.	1.1	10
112	Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Frontiers in Neuroscience, 2018, 12, 725.	1.4	39
113	Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell, 2018, 175, 679-694.e22.	13.5	344
114	Microbiota, Liver Diseases, and Alcohol. , 2018, , 187-212.		2
115	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
116	Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond Clostridium difficile. , 2018, , 291-308.		2
117	Enterococci and Their Interactions with the Intestinal Microbiome. , 2018, , 309-330.		7
118	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. , 2018, , 1-47.		0
119	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265.		0
120	Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?. , 2018, , 363-370.		0
121	The Genomic Basis of Lactobacilli as Health-Promoting Organisms. , 2018, , 49-71.		0
122	Microbial Interactions and Interventions in Colorectal Cancer. , 2018, , 99-130.		1
123	Bifidobacteria and Their Health-Promoting Effects. , 2018, , 73-98.		13
124	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148.		0
125	The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61, 1838-1848.	2.9	76
126	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257

#	Article	IF	CITATIONS
127	The Transplantation of ω3 PUFA–Altered Gut Microbiota of fat-1 Mice to Wild-Type Littermates Prevents Obesity and Associated Metabolic Disorders. Diabetes, 2018, 67, 1512-1523.	0.3	65
128	Fecal <i>Enterobacteriales</i> enrichment is associated with increased inÂvivo intestinal permeability in humans. Physiological Reports, 2018, 6, e13649.	0.7	37
129	Human gut microbiome: hopes, threats and promises. Gut, 2018, 67, 1716-1725.	6.1	957
130	The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB Journal, 2018, 32, 6681-6693.	0.2	137
131	Prebiotics Supplementation Impact on the Reinforcing and Motivational Aspect of Feeding. Frontiers in Endocrinology, 2018, 9, 273.	1.5	22
132	Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake. Frontiers in Endocrinology, 2018, 9, 328.	1.5	35
133	Inulin Improves Postprandial Hypertriglyceridemia by Modulating Gene Expression in the Small Intestine. Nutrients, 2018, 10, 532.	1.7	24
134	Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Scientific Reports, 2018, 8, 12321.	1.6	71
135	Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget, 2018, 9, 18224-18238.	0.8	90
136	Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 2018, 13, e0192447.	1.1	8
137	Pleiotropic Effects of Totum-63—Simultaneous Targeting of Multiple Diabetes Mediators. Diabetes, 2018, 67, .	0.3	1
138	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	6.1	73
139	Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition and Food Research, 2017, 61, 1500899.	1.5	138
140	Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 2017, 117, 93-107.	1.2	343
141	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism, 2017, 25, 522-534.	7.2	108
142	Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology - Renal Physiology, 2017, 312, G171-G193.	1.6	408
143	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	6.1	125
144	Novel insight into the role of microbiota in colorectal surgery. Gut, 2017, 66, 738-749.	6.1	82

#	Article	IF	CITATIONS
145	Gut microbiota $\hat{a} \in$ " at the intersection of everything?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 321-322.	8.2	119
146	Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 491-502.	8.2	3,192
147	Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Molecular Systems Biology, 2017, 13, 921.	3.2	43
148	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	2.0	85
149	Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocrine Development, 2017, 32, 139-164.	1.3	30
150	Adipose Tissue Metabolism and Cancer Progression: Novel Insights from Gut Microbiota?. Current Pathobiology Reports, 2017, 5, 315-322.	1.6	18
151	Combined endogenous MR biomarkers to predict basal tumor oxygenation and response to hyperoxic challenge. NMR in Biomedicine, 2017, 30, e3836.	1.6	13
152	Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Molecular Metabolism, 2017, 6, 1371-1380.	3.0	30
153	Ffar2 expression regulates leukaemic cell growth in vivo. British Journal of Cancer, 2017, 117, 1336-1340.	2.9	12
154	Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Scientific Reports, 2017, 7, 5621.	1.6	51
155	A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. Journal of Nutritional Biochemistry, 2017, 49, 15-21.	1.9	64
156	Gut cell metabolism shapes the microbiome. Science, 2017, 357, 548-549.	6.0	59
157	Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansionÂtoÂincrease satiety. Molecular Metabolism, 2017, 6, 48-60.	3.0	179
158	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
159	Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota?. Nutrients, 2017, 9, 633.	1.7	49
160	Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Frontiers in Microbiology, 2017, 8, 1765.	1.5	713
161	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
162	Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE, 2017, 12, e0181693.	1.1	53

#	Article	IF	CITATIONS
163	Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics. PLoS ONE, 2016, 11, e0160488.	1.1	27
164	Nutritional depletion in <i>n</i> â€3 PUFA in apoE knockâ€out mice: A new model of endothelial dysfunction associated with fatty liver disease. Molecular Nutrition and Food Research, 2016, 60, 2198-2207.	1.5	4
165	Monitoring Combretastatin A4–induced tumor hypoxia and hemodynamic changes using endogenous MR contrast and DCEâ€MRI. Magnetic Resonance in Medicine, 2016, 75, 866-872.	1.9	16
166	Obesity is associated with changes in oxysterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma. Scientific Reports, 2016, 6, 19694.	1.6	54
167	Microbiote intestinal et obésité : impact des lipides bioactifs issus du système endocannabinoÃ⁻de. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D305.	0.6	0
168	Galacto-Oligosaccharide has no Effect on Glucose Tolerance, inflammatory Markers or Intestinal Permeability in well-controlled Type 2 Diabetes. Proceedings of the Nutrition Society, 2016, 75, .	0.4	1
169	High-fat diet feeding differentially affects the development of inflammation in the central nervous system. Journal of Neuroinflammation, 2016, 13, 206.	3.1	126
170	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
171	Host–microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. British Journal of Nutrition, 2016, 116, 1869-1877.	1.2	85
172	Glucosensing in the gastrointestinal tract: Impact on glucose metabolism. American Journal of Physiology - Renal Physiology, 2016, 310, G645-G658.	1.6	40
173	Changes in gut microbes and host metabolism: squaring the circle?. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 563-564.	8.2	24
174	A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2016, 13, 4222-4230.	2.3	24
175	Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Scientific Reports, 2016, 6, 31849.	1.6	16
176	Human Intestinal Barrier Function in Health and Disease. Clinical and Translational Gastroenterology, 2016, 7, e196.	1.3	569
177	How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism, 2016, 5, 743-752.	3.0	237
178	Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	4.3	275
179	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
180	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149

#	Article	IF	CITATIONS
181	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.	3.3	326
182	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	1.5	125
183	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	6.1	1,379
184	Lack of anti-inflammatory effect of coenzyme Q10 supplementation in the liver of rodents after lipopolysaccharide challenge. Clinical Nutrition Experimental, 2015, 1, 10-18.	2.0	4
185	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
186	Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. Journal of Nutritional Biochemistry, 2015, 26, 1136-1146.	1.9	63
187	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
188	Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sciences, 2015, 132, 77-84.	2.0	43
189	Dietary emulsifiers—sweepers of the gut lining?. Nature Reviews Endocrinology, 2015, 11, 319-320.	4.3	14
190	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	1.5	95
191	Keeping gut lining at bay: impact of emulsifiers. Trends in Endocrinology and Metabolism, 2015, 26, 273-274.	3.1	46
192	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5.8	144
193	Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 303-310.	8.2	679
194	Ability of the gut microbiota to produce PUFAâ€derived bacterial metabolites: Proof of concept in germâ€free versus conventionalized mice. Molecular Nutrition and Food Research, 2015, 59, 1603-1613.	1.5	48
195	Harnessing Genes and Diet to Fine-Tune the Gut Microbial Fitness. Cell Metabolism, 2015, 22, 754-756.	7.2	5
196	Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 2015, 22, 658-668.	7.2	763
197	Novel opportunities for next-generation probiotics targeting metabolic syndrome. Current Opinion in Biotechnology, 2015, 32, 21-27.	3.3	127
198	Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clinical Nutrition, 2015, 34, 341-349.	2.3	101

#	Article	IF	CITATIONS
199	<i>N</i> â€Acylethanolamineâ€hydrolyzing acid amidase inhibition increases colon <i>N</i> â€palmitoylethanolamine levels and counteracts murine colitis. FASEB Journal, 2015, 29, 650-661.	0.2	93
200	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
201	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
202	Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.	1.1	111
203	<i>Saccharomyces boulardii</i> Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low - Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic <i>db</i> / <i>db</i> Mice. MBio, 2014, 5, e01011-14.	1.8	217
204	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
205	Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes. Antioxidants and Redox Signaling, 2014, 20, 557-573.	2.5	44
206	Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Beneficial Microbes, 2014, 5, 3-17.	1.0	241
207	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	4.4	491
208	Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women. Lipids, 2014, 49, 397-402.	0.7	63
209	Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes and Metabolism, 2014, 40, 246-257.	1.4	104
210	Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in dietâ€induced obese mice. Obesity, 2014, 22, 1653-1661.	1,5	9
211	The gut microbiota manages host metabolism. Nature Reviews Endocrinology, 2014, 10, 74-76.	4.3	125
212	Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4485-93.	3.3	652
213	Hypoxia Modulates the Differentiation Potential of Stem Cells of the Apical Papilla. Journal of Endodontics, 2014, 40, 1410-1418.	1.4	59
214	Prebiotics supplementation improves the endothelial dysfunction in n-3 PUFA-depleted ApoE-/- mice. Archives of Public Health, 2014, 72, O5.	1.0	1
215	When specific gut microbes reveal a possible link between hepatic steatosis and adipose tissue. Journal of Hepatology, 2014, 61, 5-6.	1.8	12
216	Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 189-196.	2.6	192

#	Article	IF	CITATIONS
217	Role of the Lower and Upper Intestine in the Production and Absorption of Gut Microbiota-Derived PUFA Metabolites. PLoS ONE, 2014, 9, e87560.	1.1	67
218	Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. British Journal of Nutrition, 2013, 109, 802-809.	1.2	197
219	Evaluation of the relationship between GPR43 and adiposity in human. Nutrition and Metabolism, 2013, 10, 11.	1.3	40
220	Endurance training in mice increases the unfolded protein response induced by a high-fat diet. Journal of Physiology and Biochemistry, 2013, 69, 215-225.	1.3	36
221	Harnessing the beneficial properties of adipogenic microbes for improving human health. Obesity Reviews, 2013, 14, 721-735.	3.1	13
222	Diabetes, obesity and gut microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 73-83.	1.0	472
223	Probiotics, prebiotics, and the host microbiome: the science of translation. Annals of the New York Academy of Sciences, 2013, 1306, 1-17.	1.8	98
224	Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit. Cell Host and Microbe, 2013, 14, 582-590.	5.1	306
225	Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387.	1.3	104
226	Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology, 2013, 13, 935-940.	1.7	300
227	Dietary supplementation with <i>Agaricus blazei</i> murill extract prevents dietâ€induced obesity and insulin resistance in rats. Obesity, 2013, 21, 553-561.	1.5	16
228	Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Molecular Nutrition and Food Research, 2013, 57, 347-359.	1.5	90
229	Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Advanced Drug Delivery Reviews, 2013, 65, 833-844.	6.6	124
230	Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiology and Behavior, 2013, 119, 92-96.	1.0	83
231	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
232	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	3.3	3,474
233	Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. British Journal of Nutrition, 2013, 110, 998-1011.	1.2	40
234	Impact of PPAR-α induction on glucose homoeostasis in alcohol-fed mice. Clinical Science, 2013, 125, 501-511.	1.8	12

#	Article	IF	CITATIONS
235	Gut microbiota and metabolic disorders: how prebiotic can work?. British Journal of Nutrition, 2013, 109, S81-S85.	1.2	148
236	Curcuma longa Extract Associated with White Pepper Lessens High Fat Diet-Induced Inflammation in Subcutaneous Adipose Tissue. PLoS ONE, 2013, 8, e81252.	1.1	44
237	Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17558-17563.	3.3	127
238	Mapping of oxygen by imaging lipids relaxation enhancement: A potential sensitive endogenous MRI contrast to map variations in tissue oxygenation. Magnetic Resonance in Medicine, 2013, 70, 732-744.	1.9	41
239	Chronic Endocannabinoid System Stimulation Induces Muscle Macrophage and Lipid Accumulation in Type 2 Diabetic Mice Independently of Metabolic Endotoxaemia. PLoS ONE, 2013, 8, e55963.	1.1	34
240	Toll-Like Receptor 4 Knockout Mice Are Protected against Endoplasmic Reticulum Stress Induced by a High-Fat Diet. PLoS ONE, 2013, 8, e65061.	1.1	87
241	Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes, 2012, 3, 279-288.	4.3	682
242	Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition and Diabetes, 2012, 2, e28-e28.	1.5	184
243	Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model. PLoS ONE, 2012, 7, e37971.	1.1	186
244	Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut, 2012, 61, 1701-1707.	6.1	252
245	Hedgehog Partial Agonism Drives Warburg-like Metabolism in Muscle and Brown Fat. Cell, 2012, 151, 414-426.	13.5	237
246	Ripened Dairy Products Differentially Affect Hepatic Lipid Content and Adipose Tissue Oxidative Stress Markers in Obese and Type 2 Diabetic Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 2063-2068.	2.4	24
247	Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British Journal of Cancer, 2012, 107, 1337-1344.	2.9	238
248	Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clinical Microbiology and Infection, 2012, 18, 50-53.	2.8	98
249	Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain, Behavior, and Immunity, 2012, 26, 911-918.	2.0	237
250	Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO Journal, 2012, 31, 4276-4288.	3.5	105
251	Tetrahydro iso-Alpha Acids from Hops Improve Glucose Homeostasis and Reduce Body Weight Gain and Metabolic Endotoxemia in High-Fat Diet-Fed Mice. PLoS ONE, 2012, 7, e33858.	1.1	61
252	The Loss of Metabolic Control on Alcohol Drinking in Heavy Drinking Alcohol-Dependent Subjects. PLoS ONE, 2012, 7, e38682.	1.1	58

#	Article	IF	CITATIONS
253	Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin–glucan fiber improves host metabolic alterations induced by high-fat diet in mice. Journal of Nutritional Biochemistry, 2012, 23, 51-59.	1.9	215
254	Jejunum Inflammation in Obese and Diabetic Mice Impairs Enteric Glucose Detection and Modifies Nitric Oxide Release in the Hypothalamus. Antioxidants and Redox Signaling, 2011, 14, 415-423.	2.5	39
255	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
256	Lipides et inflammation postprandialeÂ: impact du microbiote intestinal. Cahiers De Nutrition Et De Dietetique, 2011, 46, 230-233.	0.2	0
257	Lipides et inflammation postprandiale : impact du microbiote intestinal. Oleagineux Corps Gras Lipides, 2011, 18, 11-13.	0.2	0
258	The gut microbiome as therapeutic target. , 2011, 130, 202-212.		299
259	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, 2011, 31, 15-31.	4.3	358
260	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.3	881
261	Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARÎ ³ -related adipogenesis in the white adipose tissue of high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2011, 22, 712-722.	1.9	237
262	Gut Microbiota and the Pathogenesis of Insulin Resistance. Current Diabetes Reports, 2011, 11, 154-159.	1.7	97
263	Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011, 10, S10.	1.9	172
264	Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutrition and Metabolism, 2011, 8, 44.	1.3	15
265	Benefits of bariatric surgery: an issue of microbial-host metabolism interactions?. Gut, 2011, 60, 1166-1167.	6.1	11
266	Deletion of <i>Lkb1</i> in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice. Diabetes, 2011, 60, 735-745.	0.3	48
267	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	1.5	267
268	Initial Dietary and Microbiological Environments Deviate in Normalâ€weight Compared to Overweight Children at 10 Years of Age. Journal of Pediatric Gastroenterology and Nutrition, 2011, 52, 90-95.	0.9	100
269	Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a highâ€fat diet. FASEB Journal, 2011, 25, 4301-4311.	0.2	101
270	Increasing endogenous 2â€arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB Journal, 2011, 25, 2711-2721.	0.2	177

#	Article	IF	CITATIONS
271	Central Apelin Controls Glucose Homeostasis <i>via</i> a Nitric Oxide-Dependent Pathway in Mice. Antioxidants and Redox Signaling, 2011, 15, 1477-1496.	2.5	66
272	Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE, 2011, 6, e20944.	1.1	383
273	Hepatic n-3 Polyunsaturated Fatty Acid Depletion Promotes Steatosis and Insulin Resistance in Mice: Genomic Analysis of Cellular Targets. PLoS ONE, 2011, 6, e23365.	1.1	83
274	Changes in Intestinal Bifidobacteria Levels Are Associated with the Inflammatory Response in Magnesium-Deficient Mice. Journal of Nutrition, 2010, 140, 509-514.	1.3	83
275	Kupffer cell activation is a causal factor for hepatic insulin resistance. American Journal of Physiology - Renal Physiology, 2010, 298, G107-G116.	1.6	204
276	Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 2010, 104, S1-S63.	1.2	1,745
277	The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E695-E705.	1.8	134
278	The endocannabinoid system links gut microbiota to adipogenesis. Molecular Systems Biology, 2010, 6, 392.	3.2	547
279	Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. International Dairy Journal, 2010, 20, 277-280.	1.5	41
280	Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate. Cell, 2010, 140, 148-160.	13.5	336
281	Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS ONE, 2009, 4, e5844.	1.1	189
282	Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. American Journal of Clinical Nutrition, 2009, 90, 1236-1243.	2.2	615
283	Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58, 1091-1103.	6.1	2,061
284	Lipid peroxidation is not a prerequisite for the development of obesity and diabetes in high-fat-fed mice. British Journal of Nutrition, 2009, 102, 462-469.	1.2	27
285	An Adiponectin-Like Molecule with Antidiabetic Properties. Endocrinology, 2009, 150, 4493-4501.	1.4	12
286	The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 2009, 15, 1546-1558.	0.9	775
287	Gut microbiota and pregnancy, a matter of inner life. British Journal of Nutrition, 2009, 101, 1579-1580.	1.2	8
288	Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochemical Pharmacology, 2009, 78, 1391-1400.	2.0	145

#	Article	IF	CITATIONS
289	Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current Opinion in Pharmacology, 2009, 9, 737-743.	1.7	325
290	Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochemical and Biophysical Research Communications, 2009, 385, 351-356.	1.0	91
291	Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. International Immunopharmacology, 2009, 9, 767-773.	1.7	78
292	O19 RÃ1e de l'apeline cérébrale dans le maintien de l'homéostasie glucidique. Diabetes and Metal 2009, 35, A5-A6.	oolism, 1.4	1
293	Modulation nutritionnelle de la flore intestinaleÂ: une nouvelle approche diétã©tique dans la prise en charge de l'obésité�. Cahiers De Nutrition Et De Dietetique, 2009, 44, 42-46.	0.2	0
294	Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition. BMC Physiology, 2008, 8, 21.	3.6	42
295	Physiological effects of dietary fructans extracted from <i>Agave tequilana</i> Gto. and <i>Dasylirion</i> spp British Journal of Nutrition, 2008, 99, 254-261.	1.2	119
296	Brain Glucagon-Like Peptide 1 Signaling Controls the Onset of High-Fat Diet-Induced Insulin Resistance and Reduces Energy Expenditure. Endocrinology, 2008, 149, 4768-4777.	1.4	89
297	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.3	116
298	Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB Journal, 2008, 22, 2416-2426.	0.2	430
299	Immunomodulatory properties of two wheat bran fractions – aleurone-enriched and crude fractions – in obese mice fed a high fat diet. International Immunopharmacology, 2008, 8, 1423-1432.	1.7	27
300	Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie Et Biologie, 2008, 56, 305-309.	2.2	210
301	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.3	3,897
302	Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice. Cell Metabolism, 2008, 8, 437-445.	7.2	417
303	Pancreatic α-cell dysfunction in diabetes. Diabetes and Metabolism, 2008, 34, S49-S55.	1.4	61
304	Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical Nutrition, 2008, 87, 1219-1223.	2.2	498
305	Incretin Hormones. , 2008, , 623-626.		0
306	Lower Insulin Secretory Response to Glucose Induced by Artificial Nutrition in Children: Prolonged and Total Parenteral Nutrition. Pediatric Research, 2007, 62, 624-629.	1.1	10

#	Article	IF	CITATIONS
307	Central Insulin Regulates Heart Rate and Arterial Blood Flow. Diabetes, 2007, 56, 2872-2877.	0.3	44
308	SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55Î3. Journal of Lipid Research, 2007, 48, 1628-1636.	2.0	48
309	Modulation of Glucagon-like Peptide 1 and Energy Metabolism by Inulin and Oligofructose: Experimental Data. Journal of Nutrition, 2007, 137, 2547S-2551S.	1.3	163
310	Glucagon-Like Peptide-1 and Energy Homeostasis3. Journal of Nutrition, 2007, 137, 2534S-2538S.	1.3	47
311	Gut microflora as a target for energy and metabolic homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 729-734.	1.3	270
312	Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. British Journal of Nutrition, 2007, 98, 32-37.	1.2	221
313	Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, 56, 1761-1772.	0.3	4,964
314	Targeted Deletion of AIF Decreases Mitochondrial Oxidative Phosphorylation and Protects from Obesity and Diabetes. Cell, 2007, 131, 476-491.	13.5	381
315	GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 2007, 276, 18-23.	1.6	86
316	Comparison of glycemic index of spelt and wheat bread in human volunteers. Food Chemistry, 2007, 100, 1265-1271.	4.2	33
317	Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50, 2374-2383.	2.9	1,507
318	Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sciences, 2006, 79, 1007-1013.	2.0	99
319	Oligofructose promotes satiety in healthy human: a pilot study. European Journal of Clinical Nutrition, 2006, 60, 567-572.	1.3	334
320	Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia, 2006, 49, 552-561.	2.9	34
321	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	1.4	73
322	Liver Adenosine Monophosphate-Activated Kinase-α2 Catalytic Subunit Is a Key Target for the Control of Hepatic Glucose Production by Adiponectin and Leptin But Not Insulin. Endocrinology, 2006, 147, 2432-2441.	1.4	216
323	Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-Like Peptide 1 Receptor. Diabetes, 2006, 55, 1484-1490.	0.3	365
324	Effect on Components of the Intestinal Microflora and Plasma Neuropeptide Levels of Feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and Inulin to Adult and Elderly Rats. Applied and Environmental Microbiology, 2006, 72, 6533-6538.	1.4	55

#	Article	IF	CITATIONS
325	A place for dietary fibre in the management of the metabolic syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 2005, 8, 636-640.	1.3	134
326	Impact of inulin and oligofructose on gastrointestinal peptides. British Journal of Nutrition, 2005, 93, S157-S161.	1.2	248
327	Oligofructose Promotes Satiety in Rats Fed a Highâ€Fat Diet: Involvement of Glucagonâ€Like Peptideâ€1. Obesity, 2005, 13, 1000-1007.	4.0	326
328	Involvement of endogenous glucagon-like peptide-1(7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. Journal of Endocrinology, 2005, 185, 457-465.	1.2	164
329	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	3.9	263
330	Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. British Journal of Nutrition, 2004, 92, 757-761.	1.2	154
331	Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like) Tj ETQq1 1	0,784314 1.2	rgBT /Over 367
332	Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T.) Tj ETQqO 0 0 rg	BT /Overlo	ck_10 Tf 50
333	Genetic Tools for the Enhancement of Probiotic Properties. , 0, , 371-387.		0
334	United States Regulatory Considerations for Development of Live Biotherapeutic Products as Drugs. , 0, , 409-416.		1
335	Bacteriophage Clinical Use as Antibacterial "Drugs― Utility and Precedent. , 0, , 417-451.		2
336	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. , 0, , 453-483.		8
337	The Potential of Probiotics as a Therapy for Osteoporosis. , 0, , 213-233.		6
338	Engineering Diagnostic and Therapeutic Gut Bacteria. , 0, , 331-361.		4
339	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. , 0, , 267-289.		1
340	Dietary Supplementation With Agaricus Blazei Murill Extract Prevents Diet-Induced Obesity and Insulin Resistance in Rats. Obesity, 0, , .	1.5	1
341	Prebiotics and Lipid Metabolism. , 0, , 183-192.		7
342	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. , 0, , 389-408.		2

#	Article	IF	CITATIONS
343	Therapeutic Opportunities in the Vaginal Microbiome. , 0, , 149-160.		1