Jianghui Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants, 2019, 5, 810-821.	9.3	132
2	Growth Promotion and Disease Suppression Ability of a Streptomyces sp. CB-75 from Banana Rhizosphere Soil. Frontiers in Microbiology, 2017, 8, 2704.	3.5	87
3	Taxonomy and Broad-Spectrum Antifungal Activity of Streptomyces sp. SCA3-4 Isolated From Rhizosphere Soil of Opuntia stricta. Frontiers in Microbiology, 2019, 10, 1390.	3.5	74
4	Integrative Analysis of the Coloring Mechanism of Red Longan Pericarp through Metabolome and Transcriptome Analyses. Journal of Agricultural and Food Chemistry, 2021, 69, 1806-1815.	5.2	66
5	A Newly Isolated Streptomyces sp. YYS-7 With a Broad-Spectrum Antifungal Activity Improves the Banana Plant Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4. Frontiers in Microbiology, 2020, 11, 1712.	3.5	45
6	ldentification of WRKY Gene Family from Dimocarpus longan and Its Expression Analysis during Flower Induction and Abiotic Stress Responses. International Journal of Molecular Sciences, 2018, 19, 2169.	4.1	38
7	Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biology, 2019, 19, 219.	3.6	38
8	Newly Isolated Streptomyces sp. JBS5-6 as a Potential Biocontrol Agent to Control Banana Fusarium Wilt: Genome Sequencing and Secondary Metabolite Cluster Profiles. Frontiers in Microbiology, 2020, 11, 602591.	3.5	32
9	Genome-Wide Identification and Analysis of U-Box E3 Ubiquitin–Protein Ligase Gene Family in Banana. International Journal of Molecular Sciences, 2018, 19, 3874.	4.1	30
10	Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana. Molecules, 2014, 19, 2374-2389.	3.8	28
11	The <scp>LYSIN MOTIF</scp> â€ <scp>CONTAINING RECEPTOR</scp> â€ <scp>LIKE KINASE</scp> 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytologist, 2019, 223, 1530-1546.	7.3	27
12	Biodegradation of lignocellulosic agricultural residues by a newly isolated Fictibacillus sp. YS-26 improving carbon metabolic properties and functional diversity of the rhizosphere microbial community. Bioresource Technology, 2020, 310, 123381.	9.6	27
13	Biological control of banana wilt disease caused by Fusarium oxyspoum f. sp. Cubense using Streptomyces sp. H4. Biological Control, 2021, 155, 104524.	3.0	27
14	Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant. BMC Plant Biology, 2016, 16, 123.	3.6	26
15	Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome, 2016, 59, 1085-1100.	2.0	25
16	Optimization extraction and functional properties of soluble dietary fiber from pineapple pomace obtained by shear homogenization-assisted extraction. RSC Advances, 2018, 8, 41117-41130.	3.6	25
17	Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.). Molecular Biology Reports, 2012, 39, 451-459.	2.3	24
18	Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition. BMC Genomics, 2019, 20, 126.	2.8	21

JIANGHUI XIE

1.2

13

#	Article	IF	CITATIONS
19	A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Frontiers in Microbiology, 2021, 12, 706647.	3.5	21
20	Fermentation optimization and disease suppression ability of a Streptomyces ma. FS-4 from banana rhizosphere soil. BMC Microbiology, 2020, 20, 24.	3.3	20
21	Acetobacter orientalis XJC-C with a high lignocellulosic biomass-degrading ability improves significantly composting efficiency of banana residues by increasing metabolic activity and functional diversity of bacterial community. Bioresource Technology, 2021, 324, 124661.	9.6	20
22	Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant, 2021, 14, 851-854.	8.3	20
23	Stimulation of photosynthesis and enhancement of growth and yield in Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles. Plant Physiology and Biochemistry, 2020, 156, 566-577.	5.8	19
24	Identification and characterization of miRNA169 family members in banana (<i>Musa acuminata</i> L.) that respond to <i>fusarium oxysporum f.</i> sp. <i>cubense</i> infection in banana cultivars. PeerJ, 2018, 6, e6209.	2.0	19
25	Genome-wide characterization of a SRO gene family involved in response to biotic and abiotic stresses in banana (Musa spp.). BMC Plant Biology, 2019, 19, 211.	3.6	18
26	Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5–10 From a Medicinal Plant (Curculigo) Tj ETQq0 C	0 0 ₃ rgBT /C	verlock 10 Ti 18
27	The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. Plant Science, 2016, 245, 11-24.	3.6	16
28	The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses. Molecules, 2018, 23, 662.	3.8	16
29	Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biology, 2021, 22, 316.	8.8	15
30	Nutritional component changes in Xiangfen 1 banana at different developmental stages. Food and Function, 2020, 11, 8286-8296.	4.6	14
31	The M35 Metalloprotease Effector FocM35_1 Is Required for Full Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4. Pathogens, 2021, 10, 670.	2.8	14

34	Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development. Frontiers in Plant Science, 2016, 7, 1291.	3.6	12
35	Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Applied Microbiology and Biotechnology, 2022, 106, 1633-1649.	3.6	11
36	Analyses of key gene networks controlling carotenoid metabolism in Xiangfen 1 banana. BMC Plant Biology, 2022, 22, 34.	3.6	9

Identification of defense-related genes in banana roots infected by Fusarium oxysporum f. sp. cubense tropical race 4. Euphytica, 2015, 205, 837-849.

Biological Control of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4 in Banana Plantlets Using Newly Isolated <i>Streptomyces</i> sp. WHL7 from Marine Soft Coral. Plant Disease, 2022, 106, 254-259.

32

Jianghui Xie

#	Article	IF	CITATIONS
37	Isolation and Evaluation of Rhizosphere Actinomycetes With Potential Application for Biocontrolling Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. Frontiers in Microbiology, 2021, 12, 763038.	3.5	8
38	Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Frontiers in Microbiology, 2021, 12, 735732.	3.5	7
39	Identification and Antifungal Mechanism of a Novel Actinobacterium Streptomyces huiliensis sp. nov. Against Fusarium oxysporum f. sp. cubense Tropical Race 4 of Banana. Frontiers in Microbiology, 2021, 12, 722661.	3.5	7
40	FocECM33, a GPI-anchored protein, regulates vegetative growth and virulence in Fusarium oxysporum f. sp. cubense tropical race 4. Fungal Biology, 2022, 126, 213-223.	2.5	5
41	Genome-wide analysis of HAK/KUP/KT potassium transporter genes in banana (Musa acuminata L.) and their tissue-specific expression profiles under potassium stress. Plant Growth Regulation, 2022, 97, 51-60.	3.4	5
42	Effects of exogenous plant hormones on sugar accumulation and related enzyme activities during the development of longan (<i>Dimocarpus Longan</i> Lour.) fruits. Journal of Horticultural Science and Biotechnology, 2019, 94, 790-797.	1.9	4
43	Potential Biological Control of Endophytic <i>Streptomyces</i> sp. 5-4 Against Fusarium Wilt of Banana Caused by <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4. Phytopathology, 2022, 112, 1877-1885.	2.2	4