
Brokoslaw Laschowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 455-462.	3.2	20
2	Myoelectric Control of Robotic Leg Prostheses and Exoskeletons: A Review. , 2021, , .		15
3	Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks. Frontiers in Neurorobotics, 2021, 15, 730965.	2.8	39
4	Computer Vision and Deep Learning for Environment-Adaptive Control of Robotic Lower-Limb Exoskeletons. , 2021, 2021, 4631-4635.		18
5	Comparative Analysis of Environment Recognition Systems for Control of Lower-Limb Exoskeletons and Prostheses. , 2020, , .		14
6	ExoNet Database: Wearable Camera Images of Human Locomotion Environments. Frontiers in Robotics and Al, 2020, 7, 562061.	3.2	27
7	Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons. , 2019, 2019, 868-873.		47
8	Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review. Journal of Mechanisms and Robotics, 2019, 11, .	2.2	40
9	Optimization-based motor control of a Paralympic wheelchairÂathlete. Sports Engineering, 2018, 21, 207-215.	1.1	10
10	Technical Overview of Osseointegrated Transfemoral Prostheses: Orthopedic Surgery and Implant Design Centered. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2018, 1, .	0.5	9
11	Electromechanical Design of Robotic Transfemoral Prostheses. , 2018, , .		17
12	Inverse Dynamics Modeling of Paralympic Wheelchair Curling. Journal of Applied Biomechanics, 2017, 33, 294-299.	0.8	5
13	Modelling the deflection of rowing oar shafts. Sports Biomechanics, 2017, 16, 76-86.	1.6	6
14	Quantifying Body Segment Parameters Using Dual-Energy X-Ray Absorptiometry: A Paralympic Wheelchair Curler Case Report. Procedia Engineering, 2016, 147, 163-167.	1.2	8
15	Statistical Analyses of Unidirectional Static Forces on Instrumented Rowing Oarlocks. Procedia Engineering, 2016, 147, 765-769.	1.2	1
16	Body segment parameters of Paralympic athletes from dual-energy X-ray absorptiometry. Sports Engineering, 2016, 19, 155-162.	1.1	12
17	The effects of oar-shaft stiffness and length on rowing biomechanics. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2015, 229, 239-247.	0.7	2