Matthias Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a certified reference material for the determination of polycyclic aromatic hydrocarbons (PAHs) in rubber toy. Analytical and Bioanalytical Chemistry, 2022, 414, 4369-4378.	3.7	4
2	LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics, 2022, 11, 155.	3.7	3
3	Trends in selected fields of reference material production. Analytical and Bioanalytical Chemistry, 2022, 414, 4281-4289.	3.7	3
4	Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS. Rapid Communications in Mass Spectrometry, 2022, 36, .	1.5	1
5	Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production. Microorganisms, 2021, 9, 443.	3.6	10
6	Cleaving Ergot Alkaloids by Hydrazinolysis—A Promising Approach for a Sum Parameter Screening Method. Toxins, 2021, 13, 342.	3.4	3
7	Development and certification of a reference material for zearalenone in maize germ oil. Analytical and Bioanalytical Chemistry, 2021, 413, 5483-5491.	3.7	5
8	Diastereoselective synthesis of (±)-trichodiene and (±)-trichodiene-D ₃ as analytical standards for the on-site quantification of trichothecenes. Organic and Biomolecular Chemistry, 2021, 19, 9872-9879.	2.8	1
9	Development of certified reference materials for the determination of cadmium and acrylamide in cocoa. Analytical and Bioanalytical Chemistry, 2020, 412, 4659-4668.	3.7	6
10	Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 3141-3152.	3.7	4
11	CCQM-K146 low-polarity analyte in high fat food: benzo[a]pyrene in olive oil. Metrologia, 2020, 57, 08017.	1.2	4
12	Formation of Zearalenone Metabolites in Tempeh Fermentation. Molecules, 2019, 24, 2697.	3.8	16
13	Prediction of Transformation Products of Monensin by Electrochemistry Compared to Microsomal Assay and Hydrolysis. Molecules, 2019, 24, 2732.	3.8	2
14	Glucosylation and Glutathione Conjugation of Chlorpyrifos and Fluopyram Metabolites Using Electrochemistry/Mass Spectrometry. Molecules, 2019, 24, 898.	3.8	14
15	Transformation Products of Organic Contaminants and Residues—Overview of Current Simulation Methods. Molecules, 2019, 24, 753.	3.8	22
16	First Synthesis of (â^')-Altenuene-D3 Suitable as Internal Standard for Isotope Dilution Mass Spectrometry. Molecules, 2019, 24, 4563.	3.8	3
17	Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays. Analytical and Bioanalytical Chemistry, 2018, 410, 2607-2617.	3.7	16
18	Investigation of Chlorpyrifos and Its Transformation Products in Fruits and Spices by Combining Electrochemistry and Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Analytical Methods, 2018, 11, 2657-2665.	2.6	9

MATTHIAS KOCH

#	Article	IF	CITATIONS
19	Synthesis and Structural Identification of a Biaryl Ether-Linked Zearalenone Dimer. Molecules, 2018, 23, 2624.	3.8	0
20	New Photodegradation Products of the Fungicide Fluopyram: Structural Elucidation and Mechanism Identification. Molecules, 2018, 23, 2940.	3.8	8
21	Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties. Toxins, 2018, 10, 538.	3.4	6
22	Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains. Toxins, 2018, 10, 104.	3.4	29
23	Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins, 2018, 10, 284.	3.4	17
24	Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos. Analytical and Bioanalytical Chemistry, 2017, 409, 3359-3368.	3.7	18
25	Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction. Analytical and Bioanalytical Chemistry, 2017, 409, 4037-4045.	3.7	8
26	Detection of a Toxic Methylated Derivative of Phomopsin A Produced by the Legume-Infesting Fungus <i>Diaporthe toxica</i> . Journal of Natural Products, 2017, 80, 1930-1934.	3.0	18
27	T-2 and HT-2 toxins in oat flakes: development of a certified reference material. Analytical and Bioanalytical Chemistry, 2015, 407, 2997-3007.	3.7	10
28	Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil. Analytical and Bioanalytical Chemistry, 2015, 407, 3489-3497.	3.7	50
29	Estrogenicity of novel phase I and phase II metabolites of zearalenone and cis-zearalenone. Toxicon, 2015, 105, 10-12.	1.6	53
30	Biotransformation of the mycotoxin zearalenone by fungi of the genera <i>Rhizopus</i> and <i>Aspergillus</i> . FEMS Microbiology Letters, 2014, 359, 124-130.	1.8	62
31	<i>In Vitro</i> Phase I Metabolism of <i>cis</i> -Zearalenone. Chemical Research in Toxicology, 2014, 27, 1972-1978.	3.3	14
32	Development and certification of a reference material for Fusarium mycotoxins in wheat flour. Analytical and Bioanalytical Chemistry, 2013, 405, 4755-4763.	3.7	13
33	Photochemical <i>trans</i> -/ <i>cis</i> -Isomerization and Quantitation of Zearalenone in Edible Oils. Journal of Agricultural and Food Chemistry, 2012, 60, 11733-11740.	5.2	29
34	Certification of reference materials for ochratoxin A analysis in coffee and wine. Accreditation and Quality Assurance, 2011, 16, 429-437.	0.8	16
35	Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied Microbiology and Biotechnology, 2010, 86, 1595-1612.	3.6	194
36	Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils. Journal of Chromatography A, 2010, 1217, 2206-2215.	3.7	27

MATTHIAS KOCH

#	Article	IF	CITATIONS
37	Determination of Total Sulfite in Wine by Ion Chromatography after In-Sample Oxidation. Journal of Agricultural and Food Chemistry, 2010, 58, 9463-9467.	5.2	145
38	A Comparison of Chromatographic Methods for the Determination of Deoxynivalenol in Wheat. Chromatographia, 2009, 69, 1457-1462.	1.3	14
39	Development of Two Certified Reference Materials for Acrylamide Determination in Foods. Journal of Agricultural and Food Chemistry, 2009, 57, 8202-8207.	5.2	18
40	Feasibility studies for the preparation and certification of reference materials Part II: mineral oil contaminated waste materials. Accreditation and Quality Assurance, 2006, 11, 122-129.	0.8	2
41	Concise Synthesis of Alternariol and Alternariol-9-monomethyl ether as well as their D3-Isotopologues. Synthesis, 0, , .	2.3	1