Jeroen Hoebeke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157316/publications.pdf

Version: 2024-02-01

304743 214800 2,443 85 22 47 h-index citations g-index papers 85 85 85 2350 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Survey of LoRaWAN for IoT: From Technology to Application. Sensors, 2018, 18, 3995.	3.8	351
2	Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet of Things Journal, 2017, 4, 2186-2198.	8.7	243
3	LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors, 2017, 17, 1193.	3.8	210
4	IETF Standardization in the Field of the Internet of Things (IoT): A Survey. Journal of Sensor and Actuator Networks, 2013, 2, 235-287.	3.9	177
5	Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet of Things Journal, 2019, 6, 3097-3109.	8.7	102
6	Experimental Evaluation of UWB Indoor Positioning for Sport Postures. Sensors, 2018, 18, 168.	3.8	83
7	Survey on Wireless Technology Trade-Offs for the Industrial Internet of Things. Sensors, 2020, 20, 488.	3.8	66
8	UWB Localization with Battery-Powered Wireless Backbone for Drone-Based Inventory Management. Sensors, 2019, 19, 467.	3.8	64
9	The Bluetooth Mesh Standard: An Overview and Experimental Evaluation. Sensors, 2018, 18, 2409.	3.8	60
10	Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic. Sensors, 2018, 18, 325.	3.8	54
11	Flexible Multimodal Sub-Gigahertz Communication for Heterogeneous Internet of Things Applications. IEEE Communications Magazine, 2018, 56, 146-153.	6.1	51
12	Sub-GHz LPWAN Network Coexistence, Management and Virtualization: An Overview and Open Research Challenges. Wireless Personal Communications, 2017, 95, 187-213.	2.7	46
13	Internet of Things Virtual Networks: Bringing Network Virtualization to Resource-Constrained Devices. , 2012, , .		39
14	Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs: an overview and future challenges. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	37
15	Experimental Evaluation of UWB Indoor Positioning for Indoor Track Cycling. Sensors, 2019, 19, 2041.	3.8	36
16	Modelling the energy consumption for over-the-air software updates in LPWAN networks: SigFox, LoRa and IEEE 802.15.4g. Internet of Things (Netherlands), 2018, 3-4, 104-119.	7.7	34
17	In-Band Network Telemetry in Industrial Wireless Sensor Networks. IEEE Transactions on Network and Service Management, 2020, 17, 517-531.	4.9	32
18	ReLoc: Hybrid RSSI-and Phase-based Relative UHF-RFID Tag Localization with COTS Devices. IEEE Transactions on Instrumentation and Measurement, 2020, , 1 -1.	4.7	32

#	Article	IF	CITATIONS
19	Towards a social and context-aware multi-sensor fall detection and risk assessment platform. Computers in Biology and Medicine, 2015, 64, 307-320.	7.0	31
20	Facilitating the creation of IoT applications through conditional observations in CoAP. Eurasip Journal on Wireless Communications and Networking, 2013, 2013, .	2.4	30
21	Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things. Wireless Personal Communications, 2015, 81, 1415-1436.	2.7	28
22	Experimental Evaluation of Unicast and Multicast CoAP Group Communication. Sensors, 2016, 16, 1137.	3.8	28
23	Extension of the IEEE 802.11ah ns-3 simulation module. , 2018, , .		28
24	ReLoc 2.0: UHF-RFID Relative Localization for Drone-Based Inventory Management. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	23
25	Flexible Unicast-Based Group Communication for CoAP-Enabled Devices. Sensors, 2014, 14, 9833-9877.	3.8	22
26	Design and evaluation of a scalable Internet of Things backend for smart ports. Software - Practice and Experience, 2021, 51, 1557-1579.	3.6	22
27	Indoor Drone Positioning: Accuracy and Cost Trade-Off for Sensor Fusion. IEEE Transactions on Vehicular Technology, 2022, 71, 961-974.	6.3	22
28	Strategies and Challenges for Interconnecting Wireless Mesh and Wireless Sensor Networks. Wireless Personal Communications, 2010, 53, 443-463.	2.7	20
29	Integration of Heterogeneous Devices and Communication Models via the Cloud in the Constrained Internet of Things. International Journal of Distributed Sensor Networks, 2015, 2015, 1-16.	2.2	20
30	Experimental characterisation of the off-body wireless channel at 2.4 GHz for dairy cows in barns and pastures. Computers and Electronics in Agriculture, 2016, 127, 593-605.	7.7	19
31	Hybrid Schedule Management in 6TiSCH Networks: The Coexistence of Determinism and Flexibility. IEEE Access, 2018, 6, 33941-33952.	4.2	19
32	Virtual Private Ad Hoc Networking. Wireless Personal Communications, 2006, 38, 125-141.	2.7	17
33	Observing CoAP groups efficiently. Ad Hoc Networks, 2016, 37, 368-388.	5.5	17
34	In-Band Network Monitoring Technique to Support SDN-Based Wireless Networks. IEEE Transactions on Network and Service Management, 2021, 18, 627-641.	4.9	17
35	UWB anchor nodes self-calibration in NLOS conditions: a machine learning and adaptive PHY error correction approach. Wireless Networks, 2021, 27, 3007-3023.	3.0	17
36	Sub-Gigahertz Inter-Technology Interference. How Harmful is it for LoRa?. , 2018, , .		16

#	Article	lF	CITATIONS
37	Evaluating the Suitability of IEEE 802.11ah for Low-Latency Time-Critical Control Loops. IEEE Internet of Things Journal, 2019, 6, 7839-7848.	8.7	16
38	Using SCHC for an optimized protocol stack in multimodal LPWAN solutions. , 2019, , .		16
39	ORCHESTRA: Enabling Inter-Technology Network Management in Heterogeneous Wireless Networks. IEEE Transactions on Network and Service Management, 2018, 15, 1733-1746.	4.9	15
40	LoRaWAN Scheduling: From Concept to Implementation. IEEE Internet of Things Journal, 2021, 8, 12919-12933.	8.7	14
41	Assessing the Coexistence of Heterogeneous Wireless Technologies With an SDR-Based Signal Emulator: A Case Study of Wi-Fi and Bluetooth. IEEE Transactions on Wireless Communications, 2017, 16, 1755-1766.	9.2	13
42	Measurementâ€based wireless network planning, monitoring, and reconfiguration solution for robust radio communications in indoor factories. IET Science, Measurement and Technology, 2016, 10, 375-382.	1.6	12
43	Light-weight streaming protocol for the Internet of Multimedia Things: Voice streaming over NB-IoT. Pervasive and Mobile Computing, 2019, 59, 101044.	3.3	12
44	Hardware Efficient Clock Synchronization Across Wi-Fi and Ethernet-Based Network Using PTP. IEEE Transactions on Industrial Informatics, 2022, 18, 3808-3819.	11.3	12
45	snapMac: A generic MAC/PHY architecture enabling flexible MAC design. Ad Hoc Networks, 2014, 17, 37-59.	5.5	11
46	A Cloud-based Virtual Network Operator for Managing Multimodal LPWA Networks and Devices. , 2018, , .		10
47	Seamless roaming and guaranteed communication using a synchronized single-hop multi-gateway 802.15.4e TSCH network. Ad Hoc Networks, 2019, 86, 1-14.	5.5	10
48	Fine-grained management of CoAP interactions with constrained IoT devices. , 2014, , .		9
49	Secure communication in IP-based wireless sensor networks via a trusted gateway., 2015,,.		9
50	Flexible Wi-Fi Communication among Mobile Robots in Indoor Industrial Environments. Mobile Information Systems, 2018, 2018, 1-19.	0.6	9
51	An End-To-End LwM2M-Based Communication Architecture for Multimodal NB-IoT/BLE Devices. Sensors, 2020, 20, 2239.	3.8	9
52	Enabling TSN over IEEE 802.11: Low-overhead Time Synchronization for Wi-Fi Clients., 2021,,.		9
53	Bringing Time-Sensitive Networking to Wireless Professional Private Networks. Wireless Personal Communications, 2021, 121, 1255-1271.	2.7	9
54	Managed Ecosystems of Networked Objects. Wireless Personal Communications, 2011, 58, 125-143.	2.7	8

#	Article	IF	CITATIONS
55	Secure Service Proxy: A CoAP(s) Intermediary for a Securer and Smarter Web of Things. Sensors, 2017, 17, 1609.	3.8	8
56	Low Overhead, Fine-grained End-to-end Monitoring of Wireless Networks using In-band Telemetry. , 2019, , .		8
57	Efficient Vertical Handover in Heterogeneous Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2020, 7, 1960-1973.	8.7	8
58	Adaptive multi-PHY IEEE802.15.4 TSCH in sub-GHz industrial wireless networks. Ad Hoc Networks, 2021, 111, 102330.	5.5	8
59	A Multimodal Localization Framework Design for IoT Applications. Sensors, 2020, 20, 4622.	3.8	7
60	QoS Enabled Heterogeneous BLE Mesh Networks. Journal of Sensor and Actuator Networks, 2021, 10, 24.	3.9	7
61	Network virtualization as an integrated solution for emergency communication. Telecommunication Systems, 2013, 52, 1859-1876.	2.5	6
62	Enabling the web of things: facilitating deployment, discovery and resource access to IoT objects using embedded web services. International Journal of Web and Grid Services, 2014, 10, 218.	0.5	6
63	Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications. Sensors, 2016, 16, 1217.	3.8	6
64	Interactive web visualizer for IEEE 802.11ah ns-3 module. , 2018, , .		6
64	Interactive web visualizer for IEEE 802.11ah ns-3 module. , 2018, , . Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100.	4.2	6
	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE	4.2	
65	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100.	4.2 5.1	6
65	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100. Extensions to LwM2M for Intermittent Connectivity and Improved Efficiency., 2018,, Analysis of decentralized resource and service discovery mechanisms in wireless multi-hop networks.		5
65 66 67	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100. Extensions to LwM2M for Intermittent Connectivity and Improved Efficiency., 2018,,. Analysis of decentralized resource and service discovery mechanisms in wireless multi-hop networks. Computer Communications, 2006, 29, 2710-2720. Broadcast Aggregation to Improve Quality of Service in Wireless Sensor Networks. International	5.1	6 5 4
65 66 67 68	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100. Extensions to LwM2M for Intermittent Connectivity and Improved Efficiency., 2018,,. Analysis of decentralized resource and service discovery mechanisms in wireless multi-hop networks. Computer Communications, 2006, 29, 2710-2720. Broadcast Aggregation to Improve Quality of Service in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 383678.	5.1	6544
65 66 67 68	Enabling Wireless Closed Loop Communication: Optimal Scheduling Over IEEE 802.11ah Networks. IEEE Access, 2021, 9, 9084-9100. Extensions to LwM2M for Intermittent Connectivity and Improved Efficiency., 2018, , . Analysis of decentralized resource and service discovery mechanisms in wireless multi-hop networks. Computer Communications, 2006, 29, 2710-2720. Broadcast Aggregation to Improve Quality of Service in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 383678. Wireless handover performance in industrial environments: A case study., 2016, , .	5.1	65444

#	Article	lF	Citations
73	Light-Weight Integration and Interoperation of Localization Systems in IoT. Sensors, 2018, 18, 2142.	3.8	3
74	Low power, portable and infrastructure light indoor UWB ranging solution. , 2019, , .		3
75	Intra-Network Interference Robustness: An Empirical Evaluation of IEEE 802.15.4-2015 SUN-OFDM. Electronics (Switzerland), 2020, 9, 1691.	3.1	3
76	Device Discovery and Context Registration in Static Context Header Compression Networks. Information (Switzerland), 2021, 12, 83.	2.9	3
77	Deep Learning Enables Robust Drone-based UHF-RFID Localization in Warehouses. , 2022, , .		3
78	Flexible, Direct Interactions between CoAP-enabled IoT Devices. , 2014, , .		2
79	Adaptive Transport Layer Protocols using In-band Network Telemetry and eBPF. , 2021, , .		2
80	Impactless Beacon-Based Wireless TSN Association Procedure. , 2022, , .		2
81	An Energy-Efficient Multi-Modal IoT System Leveraging NB-IoT and BLE. , 2021, , .		1
82	A Digital Communication Twin for Performance Prediction and Management of Bluetooth Mesh Networks. , 2021, , .		1
83	DRiPLOF: An RPL Extension for Multi-Interface Wireless Sensor Networks in Interference-Prone Environments. Sensors, 2022, 22, 3906.	3.8	1
84	Multimodal Network Architecture for Shared Situational Awareness amongst Vessels. Sensors, 2021, 21, 6556.	3.8	0
85	FLINT: Flows for the Internet of Things. Applied Sciences (Switzerland), 2021, 11, 9303.	2.5	O