Efraim Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157310/publications.pdf Version: 2024-02-01

	117625	138484
3,745	34	58
citations	h-index	g-index
107	107	o = = 4
137	137	2774
docs citations	times ranked	citing authors
	3,745 citations 137 docs citations	3,745 34 citations h-index 137 137 docs citations 137 times ranked

FEDAIM REVES

#	Article	IF	CITATIONS
1	Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst. Chemical Communications, 2005, , 3586.	4.1	253
2	Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chemistry - A European Journal, 2006, 12, 5383-5397.	3.3	241
3	Organocatalytic Asymmetric Synthesis of α,α-Disubstituted α-Amino Acids and Derivatives. Journal of the American Chemical Society, 2008, 130, 12031-12037.	13.7	173
4	Cooperative Dienamine/Hydrogenâ€Bonding Catalysis: Enantioselective Formal [2+2] Cycloaddition of Enals with Nitroalkenes. Angewandte Chemie - International Edition, 2012, 51, 4104-4107.	13.8	158
5	How to Make Five Contiguous Stereocenters in One Reaction: Asymmetric Organocatalytic Synthesis of Pentasubstituted Cyclohexanes. Angewandte Chemie - International Edition, 2007, 46, 9202-9205.	13.8	134
6	Amino Acid Catalyzed Neogenesis of Carbohydrates: A Plausible Ancient Transformation. Chemistry - A European Journal, 2005, 11, 4772-4784.	3.3	130
7	The Origin of Stereoselectivity in Primary Amino Acid Catalyzed Intermolecular Aldol Reactions. Angewandte Chemie - International Edition, 2005, 44, 7028-7032.	13.8	126
8	Asymmetric 1,4â€Addition of Oxazolones to Nitroalkenes by Bifunctional Cinchona Alkaloid Thiourea Organocatalysts: Synthesis of α,αâ€Đisubstituted αâ€Amino Acids. Chemistry - A European Journal, 2008, 14, 10958-10966.	3.3	110
9	THE ASYMMETRIC <i>AZA</i> -MICHAEL REACTION. A REVIEW. Organic Preparations and Procedures International, 2005, 37, 513-538.	1.3	100
10	Enantioselective Organocatalytic Domino Oxaâ€Michael/Aldol/Hemiacetalization: Synthesis of Polysubstituted Furofuranes Containing Four Stereocenters. Angewandte Chemie - International Edition, 2009, 48, 5701-5704.	13.8	96
11	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	13.8	86
12	Organocatalytic Asymmetric Michael Addition of Aldehydes to β-Nitroacroleine Dimethyl Acetal. Organic Letters, 2006, 8, 6135-6138.	4.6	84
13	α-Amino Acids, β-Amino Alcohols and Related Compounds as Chiral Auxiliaries, Ligands and Catalysts in the Asymmetric Aldol Reaction. Current Organic Chemistry, 2005, 9, 219-235.	1.6	80
14	Catalytic Enantioselective [5+2] Cycloaddition between Oxidopyrylium Ylides and Enals under Dienamine Activation. Angewandte Chemie - International Edition, 2015, 54, 3043-3046.	13.8	65
15	Transannular reactions in asymmetric total synthesis. Tetrahedron, 2014, 70, 9461-9484.	1.9	60
16	Organocatalytically Generated Donor–Acceptor Cyclopropanes in Domino Reactions. One-Step Enantioselective Synthesis of Pyrrolo[1,2- <i>a</i>]quinolines. Organic Letters, 2016, 18, 1270-1273.	4.6	60
17	Enantioselective Conjugate Addition of Donor–Acceptor Hydrazones to α,β-Unsaturated Aldehydes through Formal Diaza–Ene Reaction: Access to 1,4-Dicarbonyl Compounds. Journal of the American Chemical Society, 2012, 134, 11872-11875.	13.7	59
18	Organocatalytic enantioselective (3+2) cycloaddition using stable azomethine ylides. Chemical Communications, 2011, 47, 12313.	4.1	58

#	Article	IF	CITATIONS
19	An Amineâ€Catalyzed Enantioselective [3+2] Cycloaddition of Azomethine Ylides and α,βâ€Unsaturated Aldehydes: Applications and Mechanistic Implications. Chemistry - A European Journal, 2012, 18, 7179-7188.	3.3	58
20	Organocatalytic Enantioselective Synthesis of Pyrazolidines, Pyrazolines and Pyrazolidinones. Advanced Synthesis and Catalysis, 2012, 354, 371-376.	4.3	58
21	Amino acid-catalyzed dynamic kinetic asymmetric transformations (DYKAT): one-step de novo synthesis of polyketide sugars from racemic β-hydroxy aldehydes. Tetrahedron Letters, 2005, 46, 6605-6609.	1.4	55
22	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie - International Edition, 2017, 56, 10535-10538.	13.8	54
23	Enantio- and Diastereoselective Synthesis of Substituted Tetrahydro-1 <i>H</i> -isochromanes through a Dynamic Kinetic Resolution Proceeding under Dienamine Catalysis. Organic Letters, 2012, 14, 3740-3743.	4.6	50
24	Bifunctional Squaramide Catalysts with the Same Absolute Chirality for the Diastereodivergent Access to Densely Functionalised Cyclohexanes through Enantioselective Domino Reactions. Synthesis and Mechanistic Studies. Advanced Synthesis and Catalysis, 2014, 356, 3627-3648.	4.3	47
25	(S,S)-(+)-Pseudoephedrine as Chiral Auxiliary in Asymmetric Conjugate Addition and Tandem Conjugate Addition/α-Alkylation Reactions. Journal of Organic Chemistry, 2006, 71, 7763-7772.	3.2	46
26	Organocatalytic Enantioselective Synthesis of Highly Functionalized Polysubstituted Pyrrolidines. Chemistry - A European Journal, 2008, 14, 9357-9367.	3.3	45
27	Enantioselective Cascade Reactions under N-Heterocyclic Carbene Catalysis. Synthesis, 2017, 49, 451-471.	2.3	42
28	Organocatalytic asymmetric "anti-Michael―reaction of β-ketoesters. Chemical Communications, 2007, , 3921.	4.1	41
29	The organocatalytic [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes as a convenient tool for the enantioselective synthesis of pyrrolizidines and indolizidines. Organic and Biomolecular Chemistry, 2010, 8, 2238.	2.8	40
30	Catalytic Generation of Donorâ€Acceptor Cyclopropanes under <i>N</i> â€Heterocyclic Carbene Activation and their Stereoselective Reaction with Alkylideneoxindoles. Advanced Synthesis and Catalysis, 2017, 359, 1678-1683.	4.3	40
31	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	2.0	36
32	Organocatalytic Enantioselective aza-Michael Reactions. Current Organic Chemistry, 2012, 16, 521-546.	1.6	35
33	Ethyl Glyoxylate <i>N</i> -Tosylhydrazone as Sulfonyl-Transfer Reagent in Base-Catalyzed Sulfa-Michael Reactions. Journal of Organic Chemistry, 2014, 79, 441-445.	3.2	35
34	Organocatalytic enantioselective synthesis of 2,3-dihydropyridazines. Chemical Communications, 2012, 48, 2092.	4.1	34
35	Tandem Asymmetric Conjugate Addition/α-Alkylation Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Organic Letters, 2006, 8, 2535-2538.	4.6	32
36	Catalytic Stereoselective Borylative Transannular Reactions. Angewandte Chemie - International Edition, 2020, 59, 2100-2104.	13.8	32

#	Article	IF	CITATIONS
37	Catalytic Enantioselective Transannular Morita–Baylis–Hillman Reaction. Journal of the American Chemical Society, 2019, 141, 9495-9499.	13.7	30
38	Favoring Trienamine Activation through Unconjugated Dienals: Organocatalytic Enantioselective Remote Functionalization of Alkenes. Chemistry - A European Journal, 2014, 20, 2145-2148.	3.3	28
39	5-Mercaptotetrazoles as Synthetic Equivalents of Nitrogen-Contaning Functional Groups. The Case of the Organocatalytic Enantioselective aza-Michael Reaction. Organic Letters, 2011, 13, 336-339.	4.6	27
40	Complete 2,5â€Diastereocontrol in the Organocatalytic Enantioselective [3+2] Cycloaddition of Enals with Azomethine Ylides Derived from αâ€Iminocyanoacetates: Asymmetric Synthesis of Pyrrolidines with Four Stereocentres. Advanced Synthesis and Catalysis, 2011, 353, 3307-3312.	4.3	27
41	Enantioselective Synthesis of Tertiary Propargylic Alcohols under Nâ€Heterocyclic Carbene Catalysis. Chemistry - A European Journal, 2015, 21, 8384-8388.	3.3	27
42	Double Stereodifferentiation in the "Acetate-Type―Aldol Reaction with Garner's Aldehyde. Stereocontrolled Synthesis of Polyhydroxylated γ-Amino Carbonyl Compounds. Organic Letters, 2004, 6, 3171-3174.	4.6	26
43	Highly Regio- and Stereoselective Addition of Organolithium Reagents to Extended Conjugate Amides Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Journal of Organic Chemistry, 2009, 74, 4404-4407.	3.2	22
44	Catalytic Enantioselective [5+2] Cycloaddition between Oxidopyrylium Ylides and Enals under Dienamine Activation. Angewandte Chemie, 2015, 127, 3086-3089.	2.0	20
45	Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidineâ€Squaramideâ€Derived Organocatalysts. Chemistry - A European Journal, 2016, 22, 884-889.	3.3	19
46	Carboxylates as Nucleophiles in the Enantioselective Ringâ€Opening of Formylcyclopropanes under Iminium Ion Catalysis. Chemistry - A European Journal, 2018, 24, 8764-8768.	3.3	19
47	Î ³ -Substituted Allenic Amides in the Phosphine-Catalyzed Enantioselective Higher Order Cycloaddition with Azaheptafulvenes. Organic Letters, 2020, 22, 4721-4725.	4.6	19
48	Optimizing the Structure of 4â€Dialkylaminoâ€Î±,αâ€diarylprolinol Ethers as Catalysts for the Enantioselective Cyclopropanation of α,βâ€Unsaturated Aldehydes in Water. ChemCatChem, 2013, 5, 2240-2247.	3.7	18
49	Baseâ€Promoted C→N Acyl Rearrangement: An Unconventional Approach to αâ€Amino Acid Derivatives. Chemistry - A European Journal, 2014, 20, 11650-11654.	3.3	18
50	lon-pairing catalysis in the enantioselective addition of hydrazones to <i>N</i> -acyldihydropyrrole derivatives. Chemical Communications, 2018, 54, 8905-8908.	4.1	18
51	Transitionâ€Metalâ€Free Stereoselective Borylation of Allenamides. Chemistry - A European Journal, 2018, 24, 14059-14063.	3.3	18
52	Using Conveniently Designed αâ€Amino Ketones in Michael Reactions under Iminium Catalysis: Enantioselective Synthesis of Î³â€Łactams and γâ€Aminoâ€Î′â€keto Esters. Advanced Synthesis and Catalysis, 20 355, 653-658.)1 3, 3	17
53	Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights. Chemical Science, 2017, 8, 2904-2913.	7.4	17
54	Regioselectivity Change in the Organocatalytic Enantioselective (3+2) Cycloaddition with Nitrones through Cooperative Hydrogenâ€Bonding Catalysis/Iminium Activation. Chemistry - A European Journal, 2017, 23, 2764-2768.	3.3	17

#	Article	IF	CITATIONS
55	BrÃ,nsted Acid Catalyzed (4 + 2) Cyclocondensation of 3-Substituted Indoles with Donor–Acceptor Cyclopropanes. Organic Letters, 2021, 23, 2326-2331.	4.6	17
56	Using Heteroaryl-lithium Reagents as Hydroxycarbonyl Anion Equivalents in Conjugate Addition Reactions with (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary; Enantioselective Synthesis of 3-Substituted Pyrrolidines. Journal of Organic Chemistry, 2013, 78, 614-627.	3.2	15
57	A Case Study of Thioureaâ€Assisted Iminium Formation by Hydroxyl Anion Binding: Kinetic, Spectroscopic and Computational Evidences. Advanced Synthesis and Catalysis, 2017, 359, 4122-4128.	4.3	15
58	Enantioselective Synthesis of Tropanes: BrĄ̃nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	13.8	15
59	Role of Pseudoephedrine as Chiral Auxiliary in the "Acetate-Type―Aldol Reaction with Chiral Aldehydes; Asymmetric Synthesis of Highly Functionalized Chiral Building Blocks. Journal of Organic Chemistry, 2011, 76, 460-470.	3.2	14
60	Catalytic enantioselective domino Michael/transannular aldol reaction under bifunctional catalysis. Chemical Communications, 2020, 56, 13149-13152.	4.1	14
61	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie, 2017, 129, 10671-10674.	2.0	13
62	Organocatalytic Transannular Approach to Stereodefined Bicyclo[3.1.0]hexanes. Journal of Organic Chemistry, 2018, 83, 4180-4189.	3.2	11
63	A Simple Synthesis of Polysubstituted Pyrrolidines by an Organocatalytic Three-Component Approach Featuring a One-Pot Condensation and [3+2]-Cycloaddition Reaction in Aqueous Medium. Synthesis, 2013, 45, 2669-2678.	2.3	10
64	Transannular Enantioselective (3 + 2) Cycloaddition of Cycloalkenone Hydrazones under BrÃ,nsted Acid Catalysis. Organic Letters, 2021, 23, 8738-8743.	4.6	10
65	Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chemistry - A European Journal, 2006, 12, 5175-5175.	3.3	9
66	â€~On Water' Iminium/Enamine Catalysis: Organocatalytic Enantioselective Cyclopropanation of α,β-Unsaturated Aldehydes. Synthesis, 2010, 2010, 701-713.	2.3	9
67	Organocatalytic Enantioselective Formal Conjugate Addition of a Hydroxymoyl Anion to α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2011, 17, 6048-6051.	3.3	9
68	The organocatalytic enantioselective [3+2] cycloaddition reaction of α,β-unsaturated aldehydes with azomethine ylides applied to the asymmetric synthesis of densely substituted pyrroloisoquinolines. Tetrahedron, 2013, 69, 8878-8884.	1.9	8
69	Recent Developments in Transannular Reactions. Synthesis, 2022, 54, 4167-4183.	2.3	8
70	Catalytic Stereoselective Borylative Transannular Reactions. Angewandte Chemie, 2020, 132, 2116-2120.	2.0	7
71	4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides in catalytic and enantioselective [4 + 2] cycloaddition through iminium activation. Straightforward access to the trans-decaline framework and to densely functionalized cyclohexanes. Organic Chemistry Frontiers, 2015, 2, 206-210.	4.5	6
72	Supramolecular architectures based on p-cymene/ruthenium complexes functionalized with nucleobases. CrystEngComm, 2017, 19, 6039-6048.	2.6	6

#	Article	IF	CITATIONS
73	A Direct and Efficient Stereoconservative Procedure for the Selective Oxidation of N-Protected β-Amino Alcohols. Synlett, 2005, 2005, 2110-2112.	1.8	5
74	4.03 Organocatalytic Asymmetric Nucleophilic Addition to Electron-Deficient Alkenes. , 2014, , 119-188.		5
75	Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality. Beilstein Journal of Organic Chemistry, 2015, 11, 2577-2583.	2.2	5
76	Organocatalytic enantio- and diastereoselective synthesis of 3,5-disubstituted prolines. Chemical Communications, 2016, 52, 2330-2333.	4.1	5
77	A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition. Nanoscale, 2020, 12, 14699-14707.	5.6	5
78	Enantioselective Synthesis of Tropanes: BrÃ,nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie, 2020, 132, 6846-6850.	2.0	5
79	Enantioselective construction of the 8-azabicyclo[3.2.1]octane scaffold: application in the synthesis of tropane alkaloids. Organic and Biomolecular Chemistry, 2021, 19, 3763-3775.	2.8	5
80	Stereoselective Total Synthesis of (-)-β-Conhydrine and (+)-α-Conhydrine. Synthesis, 2011, 2011, 443-450.	2.3	4
81	A general approach for the asymmetric synthesis of densely substituted piperidines and fully substituted piperidinones employing the asymmetric Mannich reaction as key step. RSC Advances, 2013, 3, 25800.	3.6	4
82	Highly diastereoselective C → N acyl rearrangement in polysubstituted pyrrolidine 2,2-dicarboxylates. Stereocontrolled synthesis of densely functionalized prolines. Organic Chemistry Frontiers, 2018, 5, 933-942.	4.5	3
83	Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides and Acrolein. Asymmetric Catalysis, 2015, 2, .	0.2	2
84	The Pseudotransannular Ring Opening of 1â€Aminocycloheptâ€4â€eneâ€derived Epoxides in the Synthesis of Tropane Alkaloids: Total Synthesis of (±)â€Ferrugine. European Journal of Organic Chemistry, 2021, 2021, 2855-2861.	2.4	2
85	Base Free Catalyzed Enantioselective Michael Reaction of bis(phenylsulfonyl)methane to α,β -Unsaturated Aldehydes under Iminium Activation. Current Topics in Medicinal Chemistry, 2014, 14, 1317-1322.	2.1	1
86	Asymmetric Hydroxylation of (S,S)-(+)-Pseudoephedrine Phenylacetamide Enolates. Letters in Organic Chemistry, 2004, 1, 331-334.	0.5	1
87	Kinetic Resolution in Transannular Morita-Baylis-Hillman Reaction: An Approximation to the Synthesis of Sesquiterpenes from Guaiane Family. Catalysts, 2022, 12, 67.	3.5	1
88	An Approach to the Synthesis of a Hepatitis C Virus Inhibitor through a Proline-Catalyzed 1,3-Dipolar Cycloaddition Using Acrolein. Synthesis, 2022, 54, 1101-1107.	2.3	1
89	Enantioselective transannular reactions by palladium-catalysed conjugate addition of aryl boronic acids. Chemical Communications, 2022, 58, 6514-6517.	4.1	1
90	Double Stereodifferentiation in the "Acetate-Type―Aldol Reaction with Garner′s Aldehyde. Stereocontrolled Synthesis of Polyhydroxylated γ-Amino Carbonyl Compounds ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
91	Acyclic Amino Acid-Catalyzed Direct Asymmetric Aldol Reactions: Alanine, the Simplest Stereoselective Organocatalyst ChemInform, 2005, 36, no.	0.0	0
92	α-Amino Acids, β-Amino Alcohols and Related Compounds as Chiral Auxiliaries, Ligands and Catalysts in the Asymmetric Aldol Reaction. ChemInform, 2006, 37, no.	0.0	0
93	Innovative Microstructural Transformation upon CO2 Supercritical Conditions on Metal-Nucleobase Aerogel and Its Use as Effective Filler for HPLC Biomolecules Separation. Nanomaterials, 2022, 12, 675.	4.1	0